Solve system of differential equations

2 Ansichten (letzte 30 Tage)
Yokuna
Yokuna am 16 Mai 2022
Kommentiert: Torsten am 16 Mai 2022
I am facing problem in solving the differential equation
is a vector () as shown in code and is also a vector (). x11=[x1,y1]. I want to solve , where represents derivative with respect to time. Can any one help me to find out x11 vs time. (Note and x11 are the same.) (Preferably use fsolve as I tried using it).
close all
clear all
clc
x01=-5;y01=-7;
x0=[x01,y01]';
beta=25;
syms x1 y1 t
x11=[x1,y1]';
c1=(1/2)*(x1-i*sin(t))^2+(3/2)*(y1-i*cos(t))^2;
row=100*exp(0.1*t);
g1=y1-x1-cos(t);
L1=c1-(1/row)*log(1-row*g1);
grad1 = gradient(L1,x11');
hess1 = hessian(L1,x11');
phi1=-(hess1)^(-1)*(grad1+diff(grad1,t));
u1=-beta*(hess1)^(-1)*x11+phi1
u1 = 
  2 Kommentare
Torsten
Torsten am 16 Mai 2022
u1 is a 2x2 matrix, x11 is a 2x1 vector.
What do you mean by
x11dot = u1
?
Maybe you mean
x11dot = u1*x1
?
Yokuna
Yokuna am 16 Mai 2022
Thanks for pointing out, I have corrected the question.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 16 Mai 2022
x01=-5;y01=-7;
x0=[x01,y01]';
beta=25;
syms x1 y1 t
x11=[x1,y1]';
c1=(1/2)*(x1-i*sin(t))^2+(3/2)*(y1-i*cos(t))^2;
row=100*exp(0.1*t);
g1=y1-x1-cos(t);
L1=c1-(1/row)*log(1-row*g1);
grad1 = gradient(L1,x11');
hess1 = hessian(L1,x11');
phi1=-(hess1)^(-1)*(grad1+diff(grad1,t));
u1=-beta*(hess1)^(-1)*x11+phi1
fun = matlabFunction(u1,'Vars',{t,x1,y1})
fun = @(t,y)fun(t,x1,y1);
y0 = [x01,y01];
tspan = [0 1]
[T,Y] = ode45(fun,tspan,y0)
plot(T,[real(Y),imag(Y)])
  2 Kommentare
Yokuna
Yokuna am 16 Mai 2022
It gives error solving it through ode45, as the inputs needs to be floats.
Torsten
Torsten am 16 Mai 2022
Replace
fun = @(t,y)fun(t,x1,y1);
by
fun = @(t,y)fun(t,y(1),y(2));

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by