Recover gaussian by using fft and ifft.
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to recover gaussian by using fft and ifft. But the result is correct only in case of the analytical fft. Please give me advice what should I do in discrete case.
clear all;
T=10;
N=256;
dt=T/(N-1);
t=linspace(-T/2,T/2,N);
f=exp(-t.^2);
g=sqrt(pi).*exp(-(pi^2).*t.^2);
F=fft(fftshift(f))*dt;
F1=F(1:N/2+1);
F2=F(N/2+1:N);
F=[F2,F1];
dnu=(N-1)/(N*T);
nuNyq=1/(2*dt);% Nyquist frequency
nu=-nuNyq+dnu*(0:N);
% plot(t,g);
% plot(nu(N/2+1-20:N/2+1+20),real(F(N/2+1-20:N/2+1+20)));
%------------ifft of analitical Fourier transform--------------------------
Z=ifft(ifftshift(g))*N*dt;
Z1=Z(1:N/2+1);
Z2=Z(N/2+1:N);
Z=[Z2,Z1];
figure
hold on;
plot(t,f);
plot(nu(N/2+1-20:N/2+1+20),real(Z(N/2+1-20:N/2+1+20)));
hold off;
%--------------------------------------------------------------------------
%----------------ifft of discrete Fourier transform------------------------
G=ifft(ifftshift((F)))*dt*N;
G1=G(1:N/2+1);
G2=G(N/2+1:N);
G=[G2,G1];
figure
hold on;
plot(t,f);
plot(nu(N/2+1-20:N/2+1+20),real(G(N/2+1-20:N/2+1+20)));
hold off;
%--------------------------------------------------------------------------
0 Kommentare
Antworten (1)
Youssef Khmou
am 30 Dez. 2014
Try :
G(end)=[];
G=(sqrt(2*pi))*G;
figure; plot(t,f,'r',t,G,'g');
0 Kommentare
Siehe auch
Kategorien
Mehr zu Transforms finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!