estimation of parameters using lsqnonlin for system of differential equations
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
data
1 36456
2 33761
3 38309
4 36638
5 36111
6 32272
7 27107
8 32067
9 26357
10 34666
11 30034
12 30354
13 27336
14 21941
15 26401
16 18164
17 26762
18 26991
19 26834
20 24589
21 19174
22 23886
23 24236
24 23924
25 22350
26 18574
27 20333
28 16072
29 20529
30 21957
31 19046
32 19522
33 19460
34 18938
35 18967
36 18591
37 18381
38 18252
39 18008
40 18105
41 18020
42 17478
43 17191
44 17297
45 16348
46 15877
47 15338
48 15034
49 14678
50 14376
51 14128
52 13959
53 13840
54 13818
55 13714
56 13588
57 13437
58 12905
59 13535
60 13354
61 13094
62 12850
63 12776
64 12529
65 12724
66 11794
67 11602
68 11459
69 11496
70 11515
71 11477
72 11422
73 10986
74 11047
75 11066
76 11054
77 11107
78 11230
79 11276
80 11831
81 12085
82 12331
83 12699
84 12900
85 13198
86 13780
87 14260
88 14638
89 15050
y = data(:,2);
t = data(:,1);
N = 1390000000;
e0 = 1217378;
a0 = 150;
i0 = 100;
q0 = 30;
h0 = 10;
r0 = 10;
d0 = 0;
s0 = N-e0-a0-i0-q0-h0-r0-d0;
y0 = [s0; e0; a0; i0; q0; h0; r0; d0];
beta0 = 0.5;
alpha0 = 0.004;
gamma0 = 0.1;
upsilon0 = 0.13;
epsilon0= 0.07;
lamda0= 0.1;
sigma0= 0.07;
kappa0= 0.03;
nu0 = 0.0001;
xi0 = 0.0002;
p0 = [beta0; alpha0; gamma0; upsilon0; epsilon0; lamda0; sigma0; kappa0; nu0; xi0 ];
options = optimoptions(@lsqnonlin,'Algorithm','trust-region-reflective');
y = lsqnonlin(Immanuel(t, y, p),y0,[],[],options);
function Immanuel = Immanuel(t, y, p)
% RHS of the ODE
N = 1390000000;
pi = 70000;
zeta = 0.1;
eta = 0.2;
theta = 0.3;
iota = 0.3;
delta = 0.1;
rho = 0.5;
mu = 0.0000425;
beta = p(1);
alpha = p(2);
gamma = p(3);
upsilon = p(4);
epsilon = p(5);
lamda = p(6);
sigma = p(7);
kappa = p(8);
nu = p(9);
xi = p(10);
ydot = zeros(10,1);
S = y(1);
E = y(2);
A = y(3);
I = y(4);
Q = y(5);
H = y(6);
R = y(7);
D = y(8);
ydot(1) = pi -beta*(zeta*A+eta*I+theta*Q+iota*H)*(S/N) -mu*S;
ydot(2) = beta*(zeta*A+eta*I+theta*Q+iota*H)*(S/N) -(delta+mu)*E;
ydot(3) = rho*delta*E-(lamda+gamma+nu+mu)*A;
ydot(4) = (1-rho)*delta*E-(sigma+kappa+mu)*I;
ydot(5) = lamda*A + sigma*I-(alpha+upsilon+mu)*Q;
ydot(6) = alpha*H + kappa*I- (epsilon+xi+mu)*H;
ydot(7) = gamma*A + upsilon*Q + epsilon*H;
ydot(8) = nu*A + xi*H;
end
this code shown error. i dont know how to modify this because i am fresher of matlab
please anyone help me how to find parameters or
please give similar examples on this code
thanks alot sir
6 Kommentare
Star Strider
am 29 Mär. 2022
I only see 8 values for ‘ydot’ although the initial declaration is:
ydot = zeros(10,1);
That could be a problem.
Also, I do not see any call to a differential equation integration function (such as ode45).
.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Function Creation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!