Two variables that are mutually dependant

4 Ansichten (letzte 30 Tage)
Zahid Iqbal Rana
Zahid Iqbal Rana am 23 Dez. 2014
Bearbeitet: dpb am 23 Dez. 2014
Dear Sir, I shall be very grateful to you if you help me in this regard.
clear all ;
clc;
Demand=300;
%%...........UNITS MIN AND MAX LIMITS ...........%%
a(1,1)=100; b(1,1)=600; %bounds on variable 1
a(1,2)=100; b(1,2)=400; %bounds on variable 2
a(1,3)=50; b(1,3)=200; %bounds on variable 3
B=[0.000136 0.0000175 0.000184;0.0000175 0.000154 0.000283;0.000184 0.000283 0.000161]; %Power Loss B Coefficient Matrix %
%%================INITIAL POPULATION ============%%
x=a+(b-a).*rand(1,3);
T=x(:,1)+x(:,2)+x(:,3); %total
z=[x(:,1)./T(:,1) x(:,2)./T(:,1) x(:,3)./T(:,1)]; % Equlity constraint
p= z.*Demand;
Total= p(:,1)+p(:,2)+p(:,3);
%%.................COST FUNCTION.............%%
f1=561+ 7.92.*p(:,1)+0.00156.*(p(:,1).^2);
f2=310+ 7.85.*p(:,2)+0.00194.*(p(:,2).^2);
f3=78+ 7.97.*p(:,3)+0.00482.*(p(:,3).^2);
TC=f1+f2+f3
%%.................Power Loss.............%%
PL=bsxfun(@times,bsxfun(@times, B,p),p');
PL=sum(PL(:))
I want to calculate TC by adding PL in demand so that
p= z.*(Demand+PL).
Please tell me how I can do this. I need p to calculate PL and PL to calculate p .

Antworten (0)

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by