How to deal with the connection between symbolic caculations and numerical caculations?

5 Ansichten (letzte 30 Tage)
First I need to do symbolic calculations to get the required equations. Then I use the equations for numerical calculations.
For example, I obtain the equation Ge1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1)) by symbolic calculations.
Then If Ge1_1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1)), one can do numerical calculations.
And I can't do numerical calculations when I want Ge1_1=Ge1.
I don't know how to deal with the connection between symbolic caculations and numerical caculations. Is there a way to solve the problem? Thank you for reading and help.
Matlab Code:
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp];
Ge1=inv(P12_1)
s=tf('s')
w=logspace(-1,1,1000);
Ge1_1=Ge1;
% Ge1_1=-1/((2*s + 1)/(s/20 + 1) + s^2*(s/10 + 1));
[mag,pha,w]=bode(Ge1_1,w);
  2 Kommentare
Walter Roberson
Walter Roberson am 23 Mär. 2022
P12_1=[-1 / H - kp;];
Could you confirm that you want
P12_1=[(-1 / H) - kp;];
which would be
P12_1 = (-1/ H) - kp;
??
Or did you possibly mean
P12_1=[-1 / (H - kp)];
Cola
Cola am 23 Mär. 2022
Bearbeitet: Cola am 23 Mär. 2022
@Walter Roberson Thanks. I mean [-1/H-kp], that is ,[(-1/ H) - kp].

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 21 Mär. 2022
"matlabFunction" converts symbolic expressions into function handles for numerical calculations.
help matlabFunction
  1 Kommentar
Cola
Cola am 23 Mär. 2022
Bearbeitet: Cola am 23 Mär. 2022
@Torsten Thank you so much.
Matlab code:
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1/H-kp];
Ge1=inv(P12_1);
Ge1 = 
omega=logspace(-1,1,1000);
Ge1_0=matlabFunction(Ge1);
Ge1_0 = function_handle with value:
@(s)-1.0./((s.*2.0+1.0)./(s./2.0e+1+1.0)+s.^2.*(s./1.0e+1+1.0))
Ge1_1=abs(Ge1_0(1i*omega));

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Paul
Paul am 23 Mär. 2022
Of course, the symbolic approach will work and might even have some benefits (IDK), but just want to make sure you're aware that it's not really necessary.
% symbolic approach
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
[num,den] = numden(Ge1);
Ge1 = num/den
Ge1 = 
% control system toolbox functionality
s = tf('s');
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
Ge1 = minreal(Ge1) % normalizes numerator and denominator for comparison to symbolic result, not necessary otherwise
Ge1 = -10 s - 200 ------------------------------------ s^4 + 30 s^3 + 200 s^2 + 400 s + 200 Continuous-time transfer function.
  3 Kommentare
Steven Lord
Steven Lord am 23 Mär. 2022
If you wanted to go directly from the symbolic Ge1 to the tf object Ge1 you could extract the numerator and denominator from the symbolic Ge1 with numden as you did and then convert those symbolic polynomials into vectors of polynomial coefficients with sym2poly.
syms s
kp=(2*s+1)/(0.05*s+1);
H=1/(s^2*(0.1*s+1));
P12_1=[-1 / H - kp;];
Ge1=inv(P12_1);
[num,den] = numden(Ge1)
num = 
den = 
N = sym2poly(num)
N = 1×2
-10 -200
D = sym2poly(den)
D = 1×5
1 30 200 400 200
You can use N and D to create the tf object.
T = tf(N, D)
T = -10 s - 200 ------------------------------------ s^4 + 30 s^3 + 200 s^2 + 400 s + 200 Continuous-time transfer function.

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by