Finding the perimeter of a 2D ellipse using composite trapezoidal integration
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Lorson Blair
am 16 Mär. 2022
Kommentiert: Lorson Blair
am 17 Mär. 2022
I am trying to find the perimeter of a 2D ellipse given by the parametric equations: x = 4 * cos(t), y = 3 * sin(t), for 0 <= t <= 2*pi. I'm using a provided trapezoid function, called trap given below:
% trap function
% a = lower limit of integral, b = upper limit of integral, n = # of subintervals
function g=trap(a,b,n)
xd=linspace(a,b,n+1);
h=xd(2)-xd(1);
sum=0.5*f(xd(1));
for j=2:n
sum=sum+f(xd(j));
end
g=h*(sum+0.5*f(xd(n+1)));
end
I also have a function for the f(x) version of the ellipse function: (x/4)^2 + (y/3)^2 = 1
function y=f(x)
y=3*sqrt(1-(x^2/16));
end
However, this does not seem to be working. My values turn out to be complex since you cannot find the square root of a negative number. I know I'm doing something wrong, but cannot seem to wrap my head around it. My main question is how do I get the equation of the ellipse into y = f(x) form. I don't think I'm doing it correctly. I have a = 0 and b = 2*pi since that's the range we are integrating over. However, I'm also not sure about that. Any help would be greatly appreciated.
0 Kommentare
Akzeptierte Antwort
Torsten
am 16 Mär. 2022
Bearbeitet: Torsten
am 16 Mär. 2022
The arclength of a curve in parametrized form C = ((f1(t),f2(t)) ,a<=t<=b) is given as
integral_{a}^{b} sqrt(f1'(t)^2+f2'(t)^2) dt.
This is used in the code below.
If you want to use your trap function instead of trapz, you can implement it as
perimeter = trap(f,0,2*pi,100)
and
function g = trap(f,a,b,n)
...
end
syms t
x = 4*cos(t);
y = 3*sin(t);
dfx = diff(x,t);
dfy = diff(y,t);
f = sqrt(dfx^2+dfy^2);
f = simplify(f);
f = matlabFunction(f);
T = linspace(0,2*pi,100);
F = f(T);
perimeter = trapz(T,F)
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!