ODE to state space conversion

23 Ansichten (letzte 30 Tage)
aakash dewangan
aakash dewangan am 8 Dez. 2021
Bearbeitet: aakash dewangan am 25 Okt. 2023
Hello,
I have written the program given below. In this program, I have 3 ODEs. I am converting these ODEs into statespace form using in-build function of MATLAB. When I run it for different values/cases, it changes the substitution "S". Can you please tell me how does it decide the substitution?
This is very important to know in my program to contunue the work.
Thank you :)
clc; clear all; close all
syms p1(t) p2(t) p3(t) rho L m v T k G
rho = 1.3; T = 45000; L = 60; m = 1; v = 400*1000/3600; k = 10; G = 0.1
Dp1 = diff(p1); D2p1 = diff(p1,2); Dp2 = diff(p2); D2p2 = diff(p2,2); Dp3 = diff(p3); D2p3 = diff(p3,2);
% Mass matrix terms
AA = rho*L/2 + m*(sin(pi*v*t/L))^2;
BB = m*sin(2*pi*v*t/L)*sin(pi*v*t/L);
CC = m*sin(3*pi*v*t/L)*sin(pi*v*t/L);
DD = rho*L/2 + m*(sin(2*pi*v*t/L))^2;
EE = m*sin(2*pi*v*t/L)*sin(3*pi*v*t/L);
FF = rho*L/2 + m*(sin(3*pi*v*t/L))^2;
% Stiffness matrix terms
GG = T*(pi/L)^2*(L/2) + k*(sin(pi*v*t/L))^2;
HH = k*sin(2*pi*v*t/L)*sin(pi*v*t/L);
II = k*sin(pi*v*t/L)*sin(3*pi*v*t/L);
JJ = T*(2*pi/L)^2*(L/2) + k*(sin(2*pi*v*t/L))^2;
KK = k*sin(2*pi*v*t/L)*sin(3*pi*v*t/L);
LL = T*(3*pi/L)^2*(L/2) + k*(sin(3*pi*v*t/L))^2;
% RHS
MM = k*G*sin(pi*v*t/L);
NN = k*G*sin(2*pi*v*t/L);
OO = k*G*sin(3*pi*v*t/L);
% Equation (coupled system of ODE to solve for p)
Eq1 = AA*diff(p1,t,2) + BB*diff(p2,t,2) + CC*diff(p3,t,2) + GG*p1 + HH*p2 + II*p3 == MM; % Equation 1
Eq2 = BB*diff(p1,t,2) + DD*diff(p2,t,2) + EE*diff(p3,t,2) + HH*p1 + JJ*p2 + KK*p3 == NN; % Equation 2
Eq3 = CC*diff(p1,t,2) + EE*diff(p2,t,2) + FF*diff(p3,t,2) + II*p1 + KK*p2 + LL*p3 == OO; % Equation 3
%% ODE to state space conversion
[V,S] = odeToVectorField(Eq1, Eq2, Eq3); % converts ODE in state space form
ftotal = matlabFunction(V, 'Vars',{'t','Y'}); % Using readymade MATLAB function to solve using ODE 45
interval = [0 L/v]; % Time Interval to run the program
y0 = [0 0 0 0 0 0]; % Initial conditions
pSol = ode45(@(t,Y)ftotal(t,Y),interval,y0); % Using ODE 45 to solve stste space form of ODE
tValues = linspace(interval(1),interval(2),180); % deviding time interval
p2Values = deval(pSol,tValues,1); % number 1 denotes first solution likewise you can mention 2 ,3 & 4 for the next three solutions
p1Values = deval(pSol,tValues,3); % number 1 denotes first solution likewise you can mention 2 ,3 & 4 for the next three solutions
p3Values = deval(pSol,tValues,5); % number 1 denotes first solution likewise you can mention 2 ,3 & 4 for the next three solutions

Akzeptierte Antwort

aakash dewangan
aakash dewangan am 25 Okt. 2023
Bearbeitet: aakash dewangan am 25 Okt. 2023
'odeToVectorField' command does the job

Weitere Antworten (0)

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by