How to specify limits for lsqnonlin

9 Ansichten (letzte 30 Tage)
Stine Larsen
Stine Larsen am 18 Sep. 2014
Kommentiert: Matt J am 19 Sep. 2014
I would like to specify that variables in my lsqnonlin fit are real. The other vectors in my problem are complex so I cannot use a fully real solver.
My function has the following form. r and theta are real-valued coordinate matrices. Intensity is a complex valued matrix. p is the real-valued and positive vector (at least that is what I want to specify). Hej is the function to be minimized.
Hej= @(p)(p(1)*besselj(1,p(2)*r)+(p(4)*besselj(1,p(6)*r).*cos(theta+p(8))+p(9)*besselj(1,p(6)*r).*sin(theta+p(8)))*exp(1i*p(5))).*(r/a<=1) ...
+ (p(1)*besselj(1, p(2)*a)/besselk(1, p(3)*a)*besselk(1,p(3)*r)+...
(p(4)*besselj(1, p(6)*a)/besselk(1, p(7)*a).*cos(theta+p(8))+p(9)*besselj(1, p(6)*a)/besselk(1, p(7)*a).*sin(theta+p(8))).*exp(1i*p(5))).*(r/a>1)...
-Intensity;
opts = optimoptions(@lsqnonlin,'DiffMaxChange', 0.1,'FinDiffType', 'central', 'Display','off','MaxFunEvals',2E7,'TolFun',1E-18,'TolX',1E-24,'MaxIter',4E3);
x0 = st; % arbitrary initial guess
lb = 0.0*ones(size(st));
[p_estimated,resnorm,residuals,exitflag,output] = lsqnonlin(Hej,x0, lb,[], opts);
The initial guess is given as real-valued and positive vector.
So how do I specify that the only valid solution are positive and realvalued?

Akzeptierte Antwort

Matt J
Matt J am 18 Sep. 2014
Bearbeitet: Matt J am 18 Sep. 2014
Implement the objective function as follows, splitting Hej into real and imaginary parts,
function out=objective(p,Intensity,r,theta)
Hej = (p(1)*besselj(1,p(2)*r)+(p(4)*besselj(1,p(6)*r).*cos(theta+p(8))+p(9)*besselj(1,p(6)*r).*sin(theta+p(8)))*exp(1i*p(5))).*(r/a<=1) + (p(1)*besselj(1, p(2)*a)/besselk(1, p(3)*a)*besselk(1,p(3)*r)+(p(4)*besselj(1, p(6)*a)/besselk(1, p(7)*a).*cos(theta+p(8))+p(9)*besselj(1, p(6)*a)/besselk(1, p(7)*a).*sin(theta+p(8))).*exp(1i*p(5))).*(r/a>1)-Intensity;
out=[real(Hej); imag(Hej)]; %Split into real and imaginary parts
end
and the minimization as
lsqnonlin(@(p)objective(p,Intensity,r,theta) , x0, lb,[], opts);
  8 Kommentare
Stine Larsen
Stine Larsen am 19 Sep. 2014
Using a cell array in 'out' this is solved.
Matt J
Matt J am 19 Sep. 2014
Way, way, way over-complicated. You have functions within functions within cells, whereas my original proposal was just two lines of numeric MATLAB operations...

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Roger Wohlwend
Roger Wohlwend am 18 Sep. 2014
I am afraid you cannot order the optimizing function to search for a real solution. If you want a real solution you have to make sure that your function Hej returns only real values. Since you use lsqnonlin as optimizing function your goal is to minimize the sum of the squared elements of the vector Hej. In my opinion, it does not make sense to minimize the sum of squared complex numbers. It would make more sense to minimize the sum of the absolute values of the complex numbers. So perhaps you should adjust Hej in a way that it returns the absolute values of the complex numbers instead of the complex numbers. If you do that, Hej returns only real values. As a consequence lsqnonlin should search for real solutions only.
  1 Kommentar
Stine Larsen
Stine Larsen am 18 Sep. 2014
Thank you for the suggestion. I will try it out and see if it gives a physical valid solution. I would still like to consider the full complex structure in case anyone has other suggestions.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange

Tags

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by