Weighted cubic spline (csaps) -- varying weighting factor
    8 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
%weighted cubic spline
x=0:0.1:10; %input data
y=5*sin(1.5*x);
x2=x;
y2=0.5+(0.5*sin(1.5*x));
pp = csaps(x,y,1,x) %weighted cubic spline
plot(x,y); hold all; plot(x2,y2); hold all; plot(x,pp,'*'); legend('input data','input weighting data','weighted cubic spline') %
I need to modify the above code to use the current y2 value to recursively (for each value of y) update the c-spline weighting factor for each value of y.
i.e. instead of:
pp = csaps(x,y,1,x)
i will have something like:
pp = csaps(x,y,[current_y2_value],x)
so the output spline will have different weights for each value of y.
please can you help
0 Kommentare
Akzeptierte Antwort
  rmc256
      
 am 2 Sep. 2014
        
      Bearbeitet: rmc256
      
 am 2 Sep. 2014
  
      Have a close look at the csaps documentation. There are two kinds of weighting factor you can see in the equation under "this smoothing spline f minimizes:", the first, w, operates directly on the squared error, the other, (1-p)*lambda operates on the 2nd derivative of f.
If you are just looking to weight the data with error bars (if y2 are your 1-sigma error bars), for example, you should just input:
pp = csaps(x,y,1,x,1./y2.^2);
If instead you really do want y2 to weight the smoothness of different areas (i.e set p not equal to 1), then you need to create a vector with a p value as the first element, and the 2:end elements as the lambda weighting factor for each knot of x, for example:
pp = csaps(x,y,[0.99,y2(2:end)]);
Again, look closely at the documentation, it makes sense when you sit down and read it all the way through.
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Splines finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

