Finding Optimal Number Of Clusters for Kmeans

66 Ansichten (letzte 30 Tage)
jameskl
jameskl am 26 Aug. 2014
Bearbeitet: Walter Roberson am 23 Jun. 2022
I want to find the number of clusters for my data for which the correlation is above .9. I know you can use a sum of squared error (SSE) scree plot but I am not sure how you create one in Matlab. Also, are there any other methods?

Antworten (2)

Taro Ichimura
Taro Ichimura am 1 Jun. 2016
Hello,
you have 2 way to do this in MatLab, use the evalclusters() and silhouette() to find an optimal k, you can also use the elbow method (i think you can find code in matlab community) check matlab documentation for examples, and below
% example
load fisheriris
clust = zeros(size(meas,1),6);
for i=1:6
clust(:,i) = kmeans(meas,i,'emptyaction','singleton',...
'replicate',5);
end
va = evalclusters(meas,clust,'CalinskiHarabasz')

Pamudu Ranasinghe
Pamudu Ranasinghe am 19 Jun. 2022
Refer "evalclusters" function
eva = evalclusters(X,'kmeans','CalinskiHarabasz','KList',1:6);
Optimal_K = eva.OptimalK;

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by