Finding Optimal Number Of Clusters for Kmeans
66 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I want to find the number of clusters for my data for which the correlation is above .9. I know you can use a sum of squared error (SSE) scree plot but I am not sure how you create one in Matlab. Also, are there any other methods?
0 Kommentare
Antworten (2)
Taro Ichimura
am 1 Jun. 2016
Hello,
you have 2 way to do this in MatLab, use the evalclusters() and silhouette() to find an optimal k, you can also use the elbow method (i think you can find code in matlab community) check matlab documentation for examples, and below
% example
load fisheriris
clust = zeros(size(meas,1),6);
for i=1:6
clust(:,i) = kmeans(meas,i,'emptyaction','singleton',...
'replicate',5);
end
va = evalclusters(meas,clust,'CalinskiHarabasz')
Pamudu Ranasinghe
am 19 Jun. 2022
Refer "evalclusters" function
eva = evalclusters(X,'kmeans','CalinskiHarabasz','KList',1:6);
Optimal_K = eva.OptimalK;
1 Kommentar
Walter Roberson
am 19 Jun. 2022
Bearbeitet: Walter Roberson
am 23 Jun. 2022
And see https://www.mathworks.com/matlabcentral/answers/52322-how-to-determine-number-of-clusters-automatically-for-each-image-to-be-used-in-k-means-algorithm#comment_2222525 for why evalclusters is mostly arbitrary with not so much real use.
Real mathematics says that every unique point should be its own cluster.
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!