the utilization of cpu and gpu is low, how to increase them?

4 Ansichten (letzte 30 Tage)
yan gao
yan gao am 24 Sep. 2021
while i am using matlab to train a alexnet from the scratch on window, the utilization ratio of cpu and gpu of my computer is low, and I wonder how to increase them.
here is my code:
trainImagesetPath = 'E:\deep_learning_dataset\tiny-imagenet-200\train';
valImagesetPath = 'E:\deep_learning_dataset\tiny-imagenet-200\val';
testImagesetPath = 'E:\deep_learning_dataset\tiny-imagenet-200\test';
miniBatchSize = 960;
imdsTrain = imageDatastore(trainImagesetPath, 'IncludeSubfolders', true, ...
'LabelSource', 'foldernames', 'FileExtensions',{'.jpg','.JPG', '.JPEG'}, 'ReadSize', miniBatchSize);
imdsValidation = imageDatastore(valImagesetPath, 'IncludeSubfolders', true, ...
'LabelSource', 'foldernames', 'FileExtensions',{'.jpg','.JPG', '.JPEG'}, 'ReadSize', miniBatchSize);
imdsTest = imageDatastore(testImagesetPath, 'IncludeSubfolders', true);
layers = [imageInputLayer([224 224 3])
convolution2dLayer(11, 96, 'Stride', [4, 4], 'Padding', [0 0 0 0])
reluLayer
batchNormalizationLayer
maxPooling2dLayer(3, 'Stride', [2, 2], 'Padding', [0 0 0 0])
groupedConvolution2dLayer(5, 128, 2, 'Stride', [1, 1], 'Padding', [2 2 2 2])
reluLayer
batchNormalizationLayer
maxPooling2dLayer(3, 'Stride', [2, 2], 'Padding', [0 0 0 0])
convolution2dLayer(3, 384, 'Stride', [1, 1], 'Padding', [1 1 1 1])
reluLayer
groupedConvolution2dLayer(3, 192, 2, 'Stride', [1, 1], 'Padding', [1 1 1 1])
reluLayer
groupedConvolution2dLayer(3, 128, 2, 'Stride', [1, 1], 'Padding', [1 1 1 1])
reluLayer
maxPooling2dLayer(3, 'Stride', [2, 2], 'Padding', [0 0 0 0])
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(4096)
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(200)
softmaxLayer
classificationLayer
];
% analyzeNetwork(layers);
inputSize = [224, 224, 3];
augimdsTrain = augmentedImageDatastore(inputSize, imdsTrain, 'ColorPreprocessing', 'gray2rgb', 'DispatchInBackground', true);
augimdsValidation = augmentedImageDatastore(inputSize, imdsValidation, 'ColorPreprocessing', 'gray2rgb', 'DispatchInBackground', true);
augimdsTest = augmentedImageDatastore(inputSize, imdsTest, 'ColorPreprocessing', 'gray2rgb');
options = trainingOptions('adam', ...
'MiniBatchSize', miniBatchSize, ...
'MaxEpochs',120, ...
'InitialLearnRate',1e-4, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropFactor', 0.25, ...
'LearnRateDropPeriod', 5, ...
'DispatchInBackground', true, ...
'Shuffle','every-epoch', ...
'ValidationData', augimdsValidation, ...
'ValidationFrequency', 20, ...
'Verbose',true, ...
'Plots','training-progress', ...
'ExecutionEnvironment', 'auto');
tic
alexNetModel = trainNetwork(augimdsTrain,layers,options);
fprintf('training process time cost: ');
toc
[YPred,scores] = classify(alexNetModel,augimdsTest);
YTest = imdsTest.Labels;
accuracy = mean(YPred == YTest);
fprintf('test acc: %f\n', accuracy);
figure
confusionchart(YTest, YPred)
my computer is a lenovo laptop called r9000k 2021 with rtx3080 laptop GPU, and the utilization ratio is shown as follow:

Antworten (0)

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by