Intersection of two lines

6 Ansichten (letzte 30 Tage)
Gaetano Pavone
Gaetano Pavone am 21 Sep. 2021
Bearbeitet: Matt J am 21 Sep. 2021
Hi, I have four coplanar points P1, P2, P3 and P4 in 3d. I would like to calculate the intersection point among the line passing through P1 and P2 and that passing through P3 and P4.
Moreover I would like to evaluate the angle between the vector connecting such intersection and the origin with z-axis and then plot the vector.

Akzeptierte Antwort

Matt J
Matt J am 21 Sep. 2021
Bearbeitet: Matt J am 21 Sep. 2021
You need a least squares solution, since lines in 3D do not generally intersect. Assuming your point data are in column-vector form, this is,
c=[P2-P1,P3-P4]\(P3-P1);
P_intersection=P1+c(1)*(P2-P1)
angle=acos(P_intersection(3)/norm(P_intersection))
  6 Kommentare
Gaetano Pavone
Gaetano Pavone am 21 Sep. 2021
For
P1=[735;234;1397];
P2=[234;735;1397];
P3=[-265;234;1397];
P4=[234;-265;1397];
c=[P2-P1,P3-P4]\[-P1,P3];
P_intersection=P1+c(1)*(P2-P1);
angle=acos(P_intersection(3)/norm(P_intersection));
it doesn't give me the correct answer.
P_intersection should be [234;234;1397].
Matt J
Matt J am 21 Sep. 2021
Bearbeitet: Matt J am 21 Sep. 2021
You seem to have had P2 and P3 interchanged.
P1=[735;234;1397];
P3=[234;735;1397];
P2=[-265;234;1397];
P4=[234;-265;1397];
c=[P2-P1,P3-P4]\(P3-P1); %edited
P_intersection=P1+c(1)*(P2-P1)
P_intersection = 3×1
234 234 1397

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by