How do I combine my function's output matrices into a single matrix?

3 Ansichten (letzte 30 Tage)
jrz
jrz am 12 Sep. 2021
Kommentiert: jrz am 12 Sep. 2021
function [] = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
for i = 1:0.1:30 % for 30 second period with 0.1s timestep
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal = [Qx]
end
end
My function is working correctly as it gives the matrices I want, although I'd like to combine them into a single output matrix but am not sure how to. Any advice would be greatly appreciated!

Akzeptierte Antwort

Dave B
Dave B am 12 Sep. 2021
Bearbeitet: Dave B am 12 Sep. 2021
Your function loops over some values and for each one computes a row vector.
To store the row vector in a matrix, specify an integer row. I've also adjusted your function to return the value:
q = integrateQuaternions;
size(q)
ans = 1×2
291 4
function Qfinal = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
QFinal = nan(length(1:.1:30),4);
row = 1;
for i = 1:0.1:30 % for 30 second period with 0.1s timestep
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal(row,:) = Qx;
row = row + 1;
end
end
Note that a more common MATLAB approach looks more like
% timesteps = 1:.1:30;
% for i = 1:length(timesteps)
% t = timesteps(i);
% q0 = t .* ...
% ...
% Qfinal(i,:) = ...
% end

Weitere Antworten (1)

Walter Roberson
Walter Roberson am 12 Sep. 2021
function Qfinal = integrateQuaternions(BR,EA)
% Parameters
A = 0; % Initial Conditions (angles halved and in rad)
B = 0;
C = -45 * (pi/180);
p = 0 * (pi/180); % Body rates in radians (0)
q = 5.5 * (pi/180); % (5.N8 deg/s)
r = 3.5 *(pi/180); % ((1+0.5*N9) deg/s)
BR = [p q r];
EA = [0 0 (-45*(pi/180))];
ivals = 1:0.1:30; % for 30 second period with 0.1s timestep
num_i = length(ivals);
Qfinal = zeros(1, num_i);
for iidx = 1 : num_i % for 30 second period with 0.1s timestep
i = ivals(iidx);
% Initial Attitude
q0 = i.*(cosd(C)*cosd(B)*cosd(A) + sind(C)*sind(B)*sind(A));
q1 = i.*(cosd(C)*cosd(B)*sind(A) - sind(C)*sind(B)*cosd(A));
q2 = i.*(cosd(C)*sind(B)*cosd(A) + sind(C)*cosd(B)*sind(A));
q3 = i.*(-cosd(C)*sind(B)*sind(A) + sind(C)*cosd(B)*cosd(A));
Q = [q0 q1 q2 q3];
%Euler Interation
q0dot = i.*(-0.5*((q1*p)+(q2*q)+(q3*r)));
q1dot = i.*(0.5*((q0*p)-(q3*q)+(q2*r)));
q2dot = i.*(0.5*((q3*p)+(q0*q)-(q1*r)));
q3dot = i.*(-0.5*((q2*p)-(q1*q)-(q0*r)));
% Normalizing
Qdot = [q0dot q1dot q2dot q3dot];
mu = sqrt(q0^2 + q1^2 + q2^2 + q3^2);
qnplus1 = Q + Qdot;
Qx = (qnplus1./mu);
Qfinal(iidx) = [Qx];
end
end

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by