Can I get a sample Matlab code for an optimization problem using Firefly Algorithm?

3 Ansichten (letzte 30 Tage)
I would like to know how Matlab codes are written for any given optimization problem using a Firefly Algorithm, preferably related to Power System engineering topics.
  1 Kommentar
satheesh aathavan
satheesh aathavan am 13 Apr. 2017
function fa_mincon % parameters [n N_iteration alpha betamin gamma] para=[40 500 0.5 0.2 1]; format long;
help fa_mincon.m % This demo uses the Firefly Algorithm
% Simple bounds/limits disp('Solve the simple spring design problem ...'); Lb=[0.05 0.25 2.0]; Ub=[2.0 1.3 15.0];
% Initial random guess u0=Lb+(Ub-Lb).*rand(size(Lb));
[u,fval,NumEval]=ffa_mincon(@cost,@constraint,u0,Lb,Ub,para);
% Display results bestsolution=u bestojb=fval total_number_of_function_evaluations=NumEval
%%% Put your own cost/objective function here --------%%% %% Cost or Objective function function z=cost(x) z=(2+x(3))*x(1)^2*x(2);
% Constrained optimization using penalty methods % by changing f to F=f+ \sum lam_j*g^2_j*H_j(g_j) % where H(g)=0 if g<=0 (true), =1 if g is false
%%% Put your own constraints here --------------------%%% function [g,geq]=constraint(x) % All nonlinear inequality constraints should be here % If no inequality constraint at all, simple use g=[]; g(1)=1-x(2)^3*x(3)/(71785*x(1)^4); % There was a typo in Cagnina et al.'s paper, % the factor should 71785 insteady of 7178 ! tmpf=(4*x(2)^2-x(1)*x(2))/(12566*(x(2)*x(1)^3-x(1)^4)); g(2)=tmpf+1/(5108*x(1)^2)-1; g(3)=1-140.45*x(1)/(x(2)^2*x(3)); g(4)=x(1)+x(2)-1.5;
% all nonlinear equality constraints should be here % If no equality constraint at all, put geq=[] as follows geq=[];
%%% End of the part to be modified -------------------%%%
%%% --------------------------------------------------%%% %%% Do not modify the following codes unless you want %%% %%% to improve its performance etc %%% % ------------------------------------------------------- % ===Start of the Firefly Algorithm Implementation ====== % Inputs: fhandle => @cost (your own cost function, % can be an external file ) % nonhandle => @constraint, all nonlinear constraints % can be an external file or a function % Lb = lower bounds/limits % Ub = upper bounds/limits % para == optional (to control the Firefly algorithm) % Outputs: nbest = the best solution found so far % fbest = the best objective value % NumEval = number of evaluations: n*MaxGeneration % Optional: % The alpha can be reduced (as to reduce the randomness) % ---------------------------------------------------------
% Start FA function [nbest,fbest,NumEval]... =ffa_mincon(fhandle,nonhandle,u0, Lb, Ub, para) % Check input parameters (otherwise set as default values) if nargin<6, para=[20 50 0.25 0.20 1]; end if nargin<5, Ub=[]; end if nargin<4, Lb=[]; end if nargin<3, disp('Usuage: FA_mincon(@cost, @constraint,u0,Lb,Ub,para)'); end
% n=number of fireflies % MaxGeneration=number of pseudo time steps % ------------------------------------------------ % alpha=0.25; % Randomness 0--1 (highly random) % betamn=0.20; % minimum value of beta % gamma=1; % Absorption coefficient % ------------------------------------------------ n=para(1); MaxGeneration=para(2); alpha=para(3); betamin=para(4); gamma=para(5);
% Total number of function evaluations NumEval=n*MaxGeneration;
% Check if the upper bound & lower bound are the same size if length(Lb) ~=length(Ub), disp('Simple bounds/limits are improper!'); return end
% Calcualte dimension d=length(u0);
% Initial values of an array zn=ones(n,1)*10^100; % ------------------------------------------------ % generating the initial locations of n fireflies [ns,Lightn]=init_ffa(n,d,Lb,Ub,u0);
% Iterations or pseudo time marching for k=1:MaxGeneration, %%%%% start iterations
% This line of reducing alpha is optional alpha=alpha_new(alpha,MaxGeneration);
% Evaluate new solutions (for all n fireflies) for i=1:n, zn(i)=Fun(fhandle,nonhandle,ns(i,:)); Lightn(i)=zn(i); end
% Ranking fireflies by their light intensity/objectives [Lightn,Index]=sort(zn); ns_tmp=ns; for i=1:n, ns(i,:)=ns_tmp(Index(i),:); end
%% Find the current best nso=ns; Lighto=Lightn; nbest=ns(1,:); Lightbest=Lightn(1);
% For output only fbest=Lightbest;
% Move all fireflies to the better locations [ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,nbest,... Lightbest,alpha,betamin,gamma,Lb,Ub);
end %%%%% end of iterations
% ------------------------------------------------------- % ----- All the subfunctions are listed here ------------ % The initial locations of n fireflies function [ns,Lightn]=init_ffa(n,d,Lb,Ub,u0) % if there are bounds/limits, if length(Lb)>0, for i=1:n, ns(i,:)=Lb+(Ub-Lb).*rand(1,d); end else % generate solutions around the random guess for i=1:n, ns(i,:)=u0+randn(1,d); end end
% initial value before function evaluations Lightn=ones(n,1)*10^100;
% Move all fireflies toward brighter ones function [ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,... nbest,Lightbest,alpha,betamin,gamma,Lb,Ub) % Scaling of the system scale=abs(Ub-Lb);
% Updating fireflies for i=1:n, % The attractiveness parameter beta=exp(-gamma*r) for j=1:n, r=sqrt(sum((ns(i,:)-ns(j,:)).^2)); % Update moves if Lightn(i)>Lighto(j), % Brighter and more attractive beta0=1; beta=(beta0-betamin)*exp(-gamma*r.^2)+betamin; tmpf=alpha.*(rand(1,d)-0.5).*scale; ns(i,:)=ns(i,:).*(1-beta)+nso(j,:).*beta+tmpf; end end % end for j
end % end for i
% Check if the updated solutions/locations are within limits [ns]=findlimits(n,ns,Lb,Ub);
% This function is optional, as it is not in the original FA % The idea to reduce randomness is to increase the convergence, % however, if you reduce randomness too quickly, then premature % convergence can occur. So use with care. function alpha=alpha_new(alpha,NGen) % alpha_n=alpha_0(1-delta)^NGen=10^(-4); % alpha_0=0.9 delta=1-(10^(-4)/0.9)^(1/NGen); alpha=(1-delta)*alpha;
% Make sure the fireflies are within the bounds/limits function [ns]=findlimits(n,ns,Lb,Ub) for i=1:n, % Apply the lower bound ns_tmp=ns(i,:); I=ns_tmp<Lb; ns_tmp(I)=Lb(I);
% Apply the upper bounds
J=ns_tmp>Ub;
ns_tmp(J)=Ub(J);
% Update this new move
ns(i,:)=ns_tmp;
end
% ----------------------------------------- % d-dimensional objective function function z=Fun(fhandle,nonhandle,u) % Objective z=fhandle(u);
% Apply nonlinear constraints by the penalty method % Z=f+sum_k=1^N lam_k g_k^2 *H(g_k) where lam_k >> 1 z=z+getnonlinear(nonhandle,u);
function Z=getnonlinear(nonhandle,u) Z=0; % Penalty constant >> 1 lam=10^15; lameq=10^15; % Get nonlinear constraints [g,geq]=nonhandle(u);
% Apply inequality constraints as a penalty function for k=1:length(g), Z=Z+ lam*g(k)^2*getH(g(k)); end % Apply equality constraints (when geq=[], length->0) for k=1:length(geq), Z=Z+lameq*geq(k)^2*geteqH(geq(k)); end
% Test if inequalities hold % H(g) which is something like an index function function H=getH(g) if g<=0, H=0; else H=1; end
% Test if equalities hold function H=geteqH(g) if g==0, H=0; else H=1; end

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Michael Haderlein
Michael Haderlein am 23 Jul. 2014

sohail afridi
sohail afridi am 31 Aug. 2021
rand

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by