gaussian kernel smoothing, how to optimize parameter sigma?
17 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi, my question is how to find an optimal standard deviation for the gaussian kernel filter smoothing?
too large, we are losing amplitude, too small, it can be still noisy
Are there standard methods to optimize this choice? on which metrics?

x= (0:0.1:7)';
y = sin(x);
y_=y + 0.3*randn(size(y)); %noisy signal
y__ = zeros(length(x), 3); % reconstructs
for i=1:length(x)
%test different gaussian sigmas
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.2^2) ) ;
y__(i,1) = k'*y_ / sum(k);
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.5^2) ) ;
y__(i,2) = k'*y_ / sum(k);
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.8^2) ) ;
y__(i,3) = k'*y_ / sum(k);
end
plot([y y_ y__])
0 Kommentare
Antworten (1)
Junpeng Lao
am 9 Okt. 2015
Hey Cyril, I come across this paper might be related to your question: http://www.princeton.edu/~samory/Papers/adaptiveKR.pdf
0 Kommentare
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!