fourier series for function and period
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
harley
am 4 Mai 2014
Bearbeitet: Star Strider
am 4 Mai 2014
hi, trying to calculate the fourier series expansion in the period -3<t<3
f(t)={2, -3<t<0; {0, 0<t<3.
any help would be appreciated.
0 Kommentare
Akzeptierte Antwort
Star Strider
am 4 Mai 2014
Bearbeitet: Star Strider
am 4 Mai 2014
You can actually do this by hand quite easily. Using the Symbolic Math Toolbox to do the same thing:
syms t w
f1 = 2;
f1_lims = [-3 0];
f2 = 0;
f2_lims = [0 3];
% Integrate to get the Fourier series for ‘f1’:
F1 = int(exp(-j*w*t) * f1, t, f1_lims(1), f1_lims(2))
% Do the same for ‘f2’:
F2 = int(exp(-j*w*t) * f2, t, f2_lims(1), f2_lims(2))
% Add them
FT = F1 + F2;
% Plot the result:
figure(1)
subplot(2,1,1)
ezplot(abs(FT), [-10*pi, 10*pi])
subplot(2,1,2)
ezplot(angle(FT), [-10*pi, 10*pi])
Experiment with this on your own to see how the transform changes if the function is symmetrical about t=0 instead ( i.e. f2=2 instead of 0 ) . How would you code a symmetric or asymmetric triangle pulse? Have some fun with it!
Note that the value of the Fourier transform at w=0 is not NaN. Think L’Hôpital’s rule...
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!