fourier series for function and period

3 Ansichten (letzte 30 Tage)
harley
harley am 4 Mai 2014
Bearbeitet: Star Strider am 4 Mai 2014
hi, trying to calculate the fourier series expansion in the period -3<t<3
f(t)={2, -3<t<0; {0, 0<t<3.
any help would be appreciated.

Akzeptierte Antwort

Star Strider
Star Strider am 4 Mai 2014
Bearbeitet: Star Strider am 4 Mai 2014
You can actually do this by hand quite easily. Using the Symbolic Math Toolbox to do the same thing:
syms t w
f1 = 2;
f1_lims = [-3 0];
f2 = 0;
f2_lims = [0 3];
% Integrate to get the Fourier series for ‘f1’:
F1 = int(exp(-j*w*t) * f1, t, f1_lims(1), f1_lims(2))
% Do the same for ‘f2’:
F2 = int(exp(-j*w*t) * f2, t, f2_lims(1), f2_lims(2))
% Add them
FT = F1 + F2;
% Plot the result:
figure(1)
subplot(2,1,1)
ezplot(abs(FT), [-10*pi, 10*pi])
subplot(2,1,2)
ezplot(angle(FT), [-10*pi, 10*pi])
Experiment with this on your own to see how the transform changes if the function is symmetrical about t=0 instead ( i.e. f2=2 instead of 0 ) . How would you code a symmetric or asymmetric triangle pulse? Have some fun with it!
Note that the value of the Fourier transform at w=0 is not NaN. Think L’Hôpital’s rule...

Weitere Antworten (0)

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by