how to draw a trajectory

16 Ansichten (letzte 30 Tage)
mostafa
mostafa am 22 Apr. 2014
Kommentiert: mostafa am 22 Apr. 2014
Hi
i have a differential equation like this:
x'' + x + x^2 = 0
its a chaos problem and i want to display the trajectories.it has two fix point, a saddle at (-1,0) and a repellor at (0,0).
we can transform the equation to ODE by this:
x'= y
y'= -x -x^2
  1 Kommentar
mostafa
mostafa am 22 Apr. 2014
if true
x0 = input('Enter the initial position [x y] - ');
tspan=[0,10*pi];
[t,x]=ode45(@simple,tspan,x0,[]);
plot(x(:,1),x(:,2));
title('Lorenz Model Trajectory XZ')
xlabel('X')
ylabel('Z')
end
but it give me error. i write equations in simple.m .

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Mischa Kim
Mischa Kim am 22 Apr. 2014
Mostafa, try something like
function my_phase()
IC = rand(10,2);
hold on
for ii = 1:length(IC(:,1))
[~,X] = ode45(@EOM,[0 2],IC(ii,:));
x = X(:,1);
y = X(:,2);
plot(x,y,'r')
end
xlabel('x')
ylabel('y')
grid
end
function dZ = EOM(t, z)
dZ = zeros(2,1);
x = z(1);
y = z(2);
dZ = [ y;...
- x - x^2];
end
You can use the IC vector to place the initial conditions to specifically show the dynamics around the fixed points.
  3 Kommentare
Mischa Kim
Mischa Kim am 22 Apr. 2014
As I pointed, use the IC vector, e.g.,
IC = bsxfun(@plus, [-1 0], rand(100,2)-0.5*ones(100,2));
You probably need to zoom to display the interesting part of the plot.
mostafa
mostafa am 22 Apr. 2014
thanks a lot. i got it

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by