how to draw a trajectory
16 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
mostafa
am 22 Apr. 2014
Kommentiert: mostafa
am 22 Apr. 2014
Hi
i have a differential equation like this:
x'' + x + x^2 = 0
its a chaos problem and i want to display the trajectories.it has two fix point, a saddle at (-1,0) and a repellor at (0,0).
we can transform the equation to ODE by this:
x'= y
y'= -x -x^2
Akzeptierte Antwort
Mischa Kim
am 22 Apr. 2014
Mostafa, try something like
function my_phase()
IC = rand(10,2);
hold on
for ii = 1:length(IC(:,1))
[~,X] = ode45(@EOM,[0 2],IC(ii,:));
x = X(:,1);
y = X(:,2);
plot(x,y,'r')
end
xlabel('x')
ylabel('y')
grid
end
function dZ = EOM(t, z)
dZ = zeros(2,1);
x = z(1);
y = z(2);
dZ = [ y;...
- x - x^2];
end
You can use the IC vector to place the initial conditions to specifically show the dynamics around the fixed points.
3 Kommentare
Mischa Kim
am 22 Apr. 2014
As I pointed, use the IC vector, e.g.,
IC = bsxfun(@plus, [-1 0], rand(100,2)-0.5*ones(100,2));
You probably need to zoom to display the interesting part of the plot.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!