implementation help of Gaussian RBM in matlab
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
First i would like to know how to make visible layer to zero mean and unit variance.I have seen in few example they followed below way.but i couldnot understand
subtracting the corresponding data with its mean and divide it by standard division, my data becomes NaN.
I am new to matlab and Neural networks.
data= batchdata(:,:,batch);
mean_data=mean(data,1),data=bsxfun(data,mean_data);
std_data=std(data,[],1);
data=bsxfun(@rdivide,data,std_data);
i am not able to find the reason
can anybody help to clear this
1 Kommentar
Greg Heath
am 23 Nov. 2013
"subtracting the corresponding data with its mean and divide it by standard division, my data becomes NaN."
Did it ever occur to you to post that code?
Akzeptierte Antwort
Greg Heath
am 23 Nov. 2013
doc zscore
help zscore
doc mapstd
help mapstd
Hope this helps.
- Thank you for formally accepting my answer*
Greg
3 Kommentare
Greg Heath
am 25 Nov. 2013
[x, t ] = engine_dataset;
[ I N ] = size(x) % 2 1199
[ O N ] = size(t) % 2 1199
z = [ x; t];
muz = mean(z')';
stdz = std(z')';
% [ muz stdz ] = [ 141.2 090.7
% 1259.5 354.8
% 754.2 548.7
% 961.7 466.1 ]
zn = ( z - repmat(muz,1,N))./repmat(stdz,1,N);
muzn = mean(zn')';
stdzn = std(zn')';
% [ muzn stdzn ] = [ -0.0000 1.0000
% 0.0000 1.0000
% -0.0000 1.0000
% -0.0000 1.0000 ]
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!