Madhava approximation of pi

5 Ansichten (letzte 30 Tage)
KayLynn
KayLynn am 26 Okt. 2013
Kommentiert: sixwwwwww am 26 Okt. 2013
I am trying to approximate the value of pi using the equation Madahava of Sangamagrama used.
The code that I have so far is:
function [ output_args ] = madhavapi(m)
%This function will takes N as input and returns an approximation for pi.
k=[0 1 2 3 4]
1./(-3).k
[1/(-3)^0/(-3)^1/(-3)^2;
1./(2.*k-1)
1./sum*12
end
I am not sure how to conclude this code. When I try to execute the above code, I do not get any answer.
  3 Kommentare
KayLynn
KayLynn am 26 Okt. 2013
I wouldnt know that. Are you able to help me with the last statement or so of this code. I am basically seeking help with the way to end this code in order to get an output that results in approximating pi.
Walter Roberson
Walter Roberson am 26 Okt. 2013
Bearbeitet: Walter Roberson am 26 Okt. 2013
You did not assign anything to "output_args"
"sum" is a function, not a variable.
You do not use "m" anywhere in your function.
The expression
1./(-3).k
is not valid. There is no "." operator in MATLAB.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

sixwwwwww
sixwwwwww am 26 Okt. 2013
Dear Kaylynn, here is the function which approximates value of pi using Madahava Sangamagrama equation:
function [ output_args ] = madhavapi(m)
k = 0:m;
output_args = 4 * sum((-1).^k ./ (2 * k + 1));
end
I hope it helps. Good luck!
  2 Kommentare
KayLynn
KayLynn am 26 Okt. 2013
I want to take an input N and return the approximate value of pi. For example if my N equals 2, I should get an output of 3.152 right?
sixwwwwww
sixwwwwww am 26 Okt. 2013
To take 'N' change the first two lines of above code as:
function [ output_args ] = madhavapi(N)
k = 0:N;
and here is the link which describes Madahava Sangamagrama equation: http://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80. So according to this equation if you put N = 2 then you will get output 3.46666666666667. As you will increase the value of N then output will come close to well known value of pi: 3.1415...

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by