Get as many data processing

1 Ansicht (letzte 30 Tage)
FRANCISCO
FRANCISCO am 25 Okt. 2013
Kommentiert: FRANCISCO am 29 Okt. 2013
good,
I previously had a binary sequence and my purpose was the creation of substrings of various lengths, eg length 4:
Sequence
1(1), 0(2), 1(3), 1(4), 0(5), 0(6), 1(7), 0(8), 0(9), 1(10), 1(11), 1(12),
1(13), 0(14), 0(15), 0(16), 1(17), 1(18), 1(19), 0(20)
Substrings
01: 1(01), 0(02), 1(03), 1(04) -> [1,0,1,1],
02: 1(01), 1(03), 0(05), 1(07) -> [1,1,0,1],
03: 1(01), 1(04), 1(07), 1(10) -> [1,1,1,1],
04: 1(01), 0(05), 0(09), 1(13) -> [1,0,0,1],
05: 1(01), 0(06), 1(11), 0(16) -> [1,0,1,0],
06: 1(01), 1(07), 1(13), 1(19) -> [1,1,1,1],
07: 0(02), 1(03), 1(04), 0(05) -> [0,1,1,0],
08: 0(02), 1(04), 0(06), 0(08) -> [0,1,0,0],
09: 0(02), 0(05), 0(08), 1(11) -> [0,0,0,1],
10: 0(02), 0(06), 1(10), 0(14) -> [0,0,1,0],
11: 0(02), 1(07), 1(12), 1(17) -> [0,1,1,1],
12: 0(02), 0(08), 0(14), 0(20) -> [0,0,0,0],
13: 1(03), 1(04), 0(05), 0(06) -> [1,1,0,0],
14: 1(03), 0(05), 1(07), 0(09) -> [1,0,1,0],
15: 1(03), 0(06), 0(09), 1(12) -> [1,0,0,1],
16: 1(03), 1(07), 1(11), 0(15) -> [1,1,1,0],
17: 1(03), 0(08), 1(13), 1(18) -> [1,0,1,1],
18: 1(04), 0(05), 0(06), 1(07) -> [1,0,0,1],
19: 1(04), 0(06), 0(08), 1(10) -> [1,0,0,1],
20: 1(04), 1(07), 1(10), 1(13) -> [1,1,1,1],
21: 1(04), 0(08), 1(12), 0(16) -> [1,0,1,0],
22: 1(04), 0(09), 0(14), 1(19) -> [1,0,0,1],
23: 0(05), 0(06), 1(07), 0(08) -> [0,0,1,0],
24: 0(05), 1(07), 0(09), 1(11) -> [0,1,0,1],
25: 0(05), 0(08), 1(11), 0(14) -> [0,0,1,0],
26: 0(05), 0(09), 1(13), 1(17) -> [0,0,1,1],
27: 0(05), 1(10), 0(15), 0(20) -> [0,1,0,0],
28: 0(06), 1(07), 0(08), 0(09) -> [0,1,0,0],
29: 0(06), 0(08), 1(10), 1(12) -> [0,0,1,1],
30: 0(06), 0(09), 1(12), 0(15) -> [0,0,1,0],
31: 0(06), 1(10), 0(14), 1(18) -> [0,1,0,1],
32: 1(07), 0(08), 0(09), 1(10) -> [1,0,0,1],
33: 1(07), 0(09), 1(11), 1(13) -> [1,0,1,1],
34: 1(07), 1(10), 1(13), 0(16) -> [1,1,1,0],
35: 1(07), 1(11), 0(15), 1(19) -> [1,1,0,1],
36: 0(08), 0(09), 1(10), 1(11) -> [0,0,1,1],
37: 0(08), 1(10), 1(12), 0(14) -> [0,1,1,0],
38: 0(08), 1(11), 0(14), 1(17) -> [0,1,0,1],
39: 0(08), 1(12), 0(16), 0(20) -> [0,1,0,0],
40: 0(09), 1(10), 1(11), 1(12) -> [0,1,1,1],
41: 0(09), 1(11), 1(13), 0(15) -> [0,1,1,0],
42: 0(09), 1(12), 0(15), 1(18) -> [0,1,0,1],
43: 1(10), 1(11), 1(12), 1(13) -> [1,1,1,1],
44: 1(10), 1(12), 0(14), 0(16) -> [1,1,0,0],
45: 1(10), 1(13), 0(16), 1(19) -> [1,1,0,1],
46: 1(11), 1(12), 1(13), 0(14) -> [1,1,1,0],
47: 1(11), 1(13), 0(15), 1(17) -> [1,1,0,1],
48: 1(11), 0(14), 1(17), 0(20) -> [1,0,1,0],
49: 1(12), 1(13), 0(14), 0(15) -> [1,1,0,0],
50: 1(12), 0(14), 0(16), 1(18) -> [1,0,0,1],
51: 1(13), 0(14), 0(15), 0(16) -> [1,0,0,0],
52: 1(13), 0(15), 1(17), 1(19) -> [1,0,1,1],
53: 0(14), 0(15), 0(16), 1(17) -> [0,0,0,1],
54: 0(14), 0(16), 1(18), 0(20) -> [0,0,1,0],
55: 0(15), 0(16), 1(17), 1(18) -> [0,0,1,1],
56: 0(16), 1(17), 1(18), 1(19) -> [0,1,1,1],
57: 1(17), 1(18), 1(19), 0(20) -> [1,1,1,0],
using the following code
if true
% code
N = 20;
n = 4;
A = hankel(1:N-n+1,N-n+1:N);
k = 0:n-1;
c = ceil((N - A(:,end) + 1)/k(end));
i2 = cumsum(c);
i1 = i2 - c + 1;
idx = zeros(i2(end),n);
for jj = 1:N-n+1
idx(i1(jj):i2(jj),:) = bsxfun(@plus,A(jj,:),(0:c(jj)-1)'*k);
end
[j1,j2,j2] = unique(s(idx),'rows')
out = [j1, histc(j2,1:max(j2))/i2(end)]; % This row corrected
end
and at the end get a count of the times to repeat each pattern and their relative frequency:
0 0 0 0------ 161697-- 0,0606515378844711
0 0 0 1------ 163593-- 0,0613627156789197
0 0 1 0------ 164201-- 0,0615907726931733
0 0 1 1------ 166680-- 0,0625206301575394
0 1 0 0------ 164105-- 0,0615547636909227
0 1 0 1------ 166501-- 0,0624534883720930
0 1 1 0------ 167099-- 0,0626777944486122
0 1 1 1------ 168835-- 0,0633289572393098
1 0 0 0------ 164086-- 0,0615476369092273
1 0 0 1------ 166963-- 0,0626267816954239
1 0 1 0------ 166931-- 0,0626147786946737
1 0 1 1------ 169470-- 0,0635671417854464
1 1 0 0------ 166622-- 0,0624988747186797
1 1 0 1------ 169326-- 0,0635131282820705
1 1 1 0------ 169251-- 0,0634849962490623
1 1 1 1------ 170640-- 0,0640060015003751
The problem that arises is that when I processed this way I only processes some 4000 data and need to process many more. I have 4GB of RAM and Matlab 2012. What I thought is this: Assign each patron an integer:
0 0 0 0------ 1
0 0 0 1-------2
0 0 1 0-------3
0 0 1 1-------4
0 1 0 0-------5
0 1 0 1-------6
0 1 1 0-------7
0 1 1 1-------8
1 0 0 0-------9
1 0 0 1-------10
1 0 1 0-------11
1 0 1 1-------12
1 1 0 0-------13
1 1 0 1-------14
1 1 1 0-------15
1 1 1 1-------16
and set as a counter to assign the number of times to repeat that integer. In this way perhaps get as many data processing. thank you very much

Antworten (1)

Walter Roberson
Walter Roberson am 25 Okt. 2013
If you are going to do that, consider using accumarray() to do the additions.
If B is the array of bits, such as
B = [0 0 0 0; 1 0 0 0; 0 1 0 0; 1 0 0 0]
then
counts = accumarray( B(:,1) * 8 + B(:,2) * 4 + B(:,3) * 2 + B(:,4) * 1 + 1, 1 );
  16 Kommentare
FRANCISCO
FRANCISCO am 29 Okt. 2013
I tried several ways but it is impossible. Maybe I should use c #
FRANCISCO
FRANCISCO am 29 Okt. 2013
Walter, you know c #?. I have the code in c # but I would like to build it in matlab but nose if possible

Melden Sie sich an, um zu kommentieren.

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by