Main Content

Diese Seite wurde mithilfe maschineller Übersetzung übersetzt. Klicken Sie hier, um die neueste Version auf Englisch zu sehen.

Zeichnen Sie ein Fehlerhistogramm für ein neuronales Netzwerk

Dieses Beispiel zeigt, wie Fehler zwischen Zielwerten und vorhergesagten Werten nach dem Training eines vorwärtsgerichteten neuronalen Netzwerks visualisiert werden.

Lesen Sie Daten vom ThingSpeak™ -Kanal der Wetterstation

ThingSpeak Kanal 12397 enthält Daten von der MathWorks® Wetterstation in Natick, Massachusetts. Die Daten werden einmal pro Minute erfasst. Die Felder 2, 3, 4 und 6 enthalten jeweils Daten zur Windgeschwindigkeit (mph), zur relativen Luftfeuchtigkeit, zur Temperatur (F) und zum Luftdruck (inHg). Lesen Sie die Daten von Kanal 12397 mit der Funktion thingSpeakRead .

data = thingSpeakRead(12397,'Fields',[2 3 4 6],'Numpoints',500,'outputFormat','table');

Weisen Sie Eingabevariablen und Zielwerte zu

Weisen Sie Eingabevariablen zu und berechnen Sie den Taupunkt aus Temperatur und relativer Luftfeuchtigkeit, um ihn als Ziel zu verwenden. Wandeln Sie die Temperatur von Fahrenheit in Celsius um und geben Sie die Konstanten für Wasserdampf (b) und Luftdruck (c) an. Berechnen Sie den Zwischenwert „Gamma“ und weisen Sie Zielwerte für das Netzwerk zu.

inputs = [data.Humidity'; data.TemperatureF'; data.PressureHg'; data.WindSpeedmph'];
tempC = (5/9)*(data.TemperatureF-32);
b = 17.62;
c = 243.5;
gamma = log(data.Humidity/100) + b*tempC ./ (c+tempC);
dewPointC = c*gamma ./ (b-gamma);
dewPointF = (dewPointC*1.8) + 32;
targets = dewPointF';

Erstellen und trainieren Sie das zweischichtige Feedforward-Netzwerk

Verwenden Sie die Funktion feedforwardnet , um ein zweischichtiges Feedforward-Netzwerk zu erstellen. Das Netzwerk verfügt über eine verborgene Schicht mit 10 Neuronen und eine Ausgabeschicht. Verwenden Sie die Funktion train , um das Feedforward-Netzwerk mithilfe der Eingaben zu trainieren.

net = feedforwardnet(10);
[net,tr] = train(net,inputs,targets);

Verwenden Sie das trainierte Modell, um Daten vorherzusagen

Nachdem das Netzwerk trainiert und validiert wurde, können Sie das Netzwerkobjekt verwenden, um die Netzwerkreaktion auf eine beliebige Eingabe zu berechnen, in diesem Fall den Taupunkt für den fünften Eingabedatenpunkt.

outputs = net(inputs(:,5))
outputs =

   22.8618

Zeichnen Sie das Fehlerhistogramm

Berechnen Sie die Fehlerwerte als Differenz zwischen Zielwerten und vorhergesagten Werten.

error = targets - outputs;
number_of_bins = 10;
ploterrhist(error,'bins',number_of_bins);

Der Plot zeigt ein Fehlerhistogramm mit 10 Bins.

Siehe auch

Funktionen