legendreP
Legendre polynomials
Syntax
Description
legendreP( returns
the n,x)nth degree Legendre polynomial at
x.
Examples
Find Legendre Polynomials for Numeric and Symbolic Inputs
Find the Legendre polynomial of degree 3 at
5.6.
legendreP(3,5.6)
ans = 430.6400
Find the Legendre polynomial of degree 2 at
x.
syms x legendreP(2,x)
ans = (3*x^2)/2 - 1/2
If you do not specify a numerical value for the degree n, the
legendreP function cannot find the explicit form of the polynomial
and returns the function call.
syms n legendreP(n,x)
ans = legendreP(n, x)
Find Legendre Polynomial with Vector and Matrix Inputs
Find the Legendre polynomials of degrees 1 and
2 by setting n = [1 2].
syms x legendreP([1 2],x)
ans = [ x, (3*x^2)/2 - 1/2]
legendreP acts element-wise on n to return a
vector with two elements.
If multiple inputs are specified as a vector, matrix, or multidimensional array, the
inputs must be the same size. Find the Legendre polynomials where input arguments
n and x are matrices.
n = [2 3; 1 2]; xM = [x^2 11/7; -3.2 -x]; legendreP(n,xM)
ans = [ (3*x^4)/2 - 1/2, 2519/343] [ -16/5, (3*x^2)/2 - 1/2]
legendreP acts element-wise on n and
x to return a matrix of the same size as n and
x.
Differentiate and Find Limits of Legendre Polynomials
Use limit to find the limit of a Legendre
polynomial of degree 3 as x tends to
-∞.
syms x expr = legendreP(4,x); limit(expr,x,-Inf)
ans = Inf
Use diff to find the third derivative of the Legendre polynomial of
degree 5.
syms n expr = legendreP(5,x); diff(expr,x,3)
ans = (945*x^2)/2 - 105/2
Find Taylor Series Expansion of Legendre Polynomial
Use taylor to find the Taylor series expansion
of the Legendre polynomial of degree 2 at x =
0.
syms x expr = legendreP(2,x); taylor(expr,x)
ans = (3*x^2)/2 - 1/2
Plot Legendre Polynomials
Plot Legendre polynomials of orders 1 through 4.
syms x y fplot(legendreP(1:4, x)) axis([-1.5 1.5 -1 1]) grid on ylabel('P_n(x)') title('Legendre polynomials of degrees 1 through 4') legend('1','2','3','4','Location','best')

Find Roots of Legendre Polynomial
Use vpasolve to find the roots of the Legendre
polynomial of degree 7.
syms x roots = vpasolve(legendreP(7,x) == 0)
roots =
-0.94910791234275852452618968404785
-0.74153118559939443986386477328079
-0.40584515137739716690660641207696
0
0.40584515137739716690660641207696
0.74153118559939443986386477328079
0.94910791234275852452618968404785Input Arguments
More About
Version History
Introduced in R2014b
See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | jacobiP | laguerreL