gppdf

Generalized Pareto probability density function

Syntax

p = gppdf(x,k,sigma,theta)

Description

p = gppdf(x,k,sigma,theta) returns the pdf of the generalized Pareto (GP) distribution with the tail index (shape) parameter k, scale parameter sigma, and threshold (location) parameter, theta, evaluated at the values in x. The size of p is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for k, sigma, and theta are 0, 1, and 0, respectively.

When k = 0 and theta = 0, the GP is equivalent to the exponential distribution. When k > 0 and theta = sigma/k, the GP is equivalent to a Pareto distribution with a scale parameter equal to sigma/k and a shape parameter equal to 1/k. The mean of the GP is not finite when k1, and the variance is not finite when k1/2. When k0, the GP has positive density for

x > theta, or, when

k < 0, $0\le \text{\hspace{0.17em}}\frac{x-\theta }{\sigma }\text{\hspace{0.17em}}\le \text{\hspace{0.17em}}-\frac{1}{k}$.

References

 Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.

 Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.

Extended Capabilities

C/C++ Code GenerationGenerate C and C++ code using MATLAB® Coder™.

Introduced before R2006a