This example shows how to estimate the cross-validation loss of an optimized classifier.
Optimize a KNN classifier for the ionosphere data, meaning find parameters that minimize the cross-validation loss. Minimize over nearest-neighborhood sizes from 1 to 30, and over the distance functions 'chebychev', 'euclidean', and 'minkowski'.
For reproducibility, set the random seed, and set the AcquisitionFunctionName option to 'expected-improvement-plus'.
load ionosphere
rng default
num = optimizableVariable('n',[1,30],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
c = cvpartition(351,'Kfold',5);
fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,...'Distance',char(x.dst),'NSMethod','exhaustive'));
results = bayesopt(fun,[num,dst],'Verbose',0,...'AcquisitionFunctionName','expected-improvement-plus');
Create a table of points to estimate.
b = categorical({'chebychev','euclidean','minkowski'});
n = [1;1;1;4;2;2];
dst = [b(1);b(2);b(3);b(1);b(1);b(3)];
XTable = table(n,dst);
Estimate the objective and standard deviation of the objective at these points.
Prediction points, specified as a table with D columns, where
D is the number of variables in the problem. The function performs
its predictions on these points.
Objective estimates, returned as an
N-by-1 vector, where
N is the number of rows of
XTable. The estimates are the mean values of the
posterior distribution of the Gaussian process model of the objective
function.
Standard deviations of objective function, returned as an
N-by-1 vector, where
N is the number of rows of
XTable. The standard deviations are those of the
posterior distribution of the Gaussian process model of the objective
function.
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window.
Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.