Main Content

DC6 - Two-Quadrant Chopper 200 HP DC Drive

This example shows the DC6 two-quadrant chopper DC drive during speed regulation.

C.Semaille, Louis-A. Dessaint (Ecole de technologie superieure, Montreal)


The 200 HP DC motor is separately excited with a constant 150 V DC field voltage source. The armature voltage is provided by an IGBT buck-boost converter controlled by two PI regulators. The buck-boost converter is fed by a 630 V DC bus obtained by rectification of a 460 V AC 60 Hz voltage source. In order to limit the DC bus voltage during dynamic braking mode, a braking chopper has been added between the diode rectifier and the DC6 block.

The first regulator is a speed regulator, followed by a current regulator. The speed regulator outputs the armature current reference (in p.u.) used by the current controller in order to obtain the electromagnetic torque needed to reach the desired speed. The speed reference change rate follows acceleration and deceleration ramps in order to avoid sudden reference changes that could cause armature over-current and destabilize the system. The current regulator controls the armature current by computing the appropriate duty ratios of the 5 kHz pulses of the two IGBT devices (Pulse Width Modulation).For proper system behaviour, the two IGBT devices have opposite instantaneous pulse values.This generates the average armature voltage needed to obtain the desired armature current. In order to limit the amplitude of the current oscillations, a smoothing inductance is placed in series with the armature circuit.


Before starting the simulation, set the initial bus voltage to 630 V via the GUI block ('Initial States Setting' button and 'Cbus' variable).

Start the simulation. You can observe the motor armature voltage and current, the two IGBT pulses and the motor speed on the scope. The current and speed references are also shown.

The speed reference is set at 400 rpm at t = 0 s. Initial load torque is 814 N.m.

Observe that the motor speed follows the reference ramp accurately (+250 rpm/s) and reaches steady state around t = 2 s. The armature current follows the current reference very well, with fast response time and small ripples. Notice that the current ripple frequency is 5 kHz.

At t = 2.1 s, the load torque passes from 814 N.m to 100 N.m. The motor speed recovers fast and is back at 400 rpm at t = 2.75 s. The current reference lowers to about 40 A to generate a smaller electromagnetic torque, the load torque being reduced. As observed before, the armature current follows its reference perfectly.

At t = 2.75 s, the speed reference jumps down to 100 rpm. In order for the motor to decelerate following the negative speed ramp, the armature current reverses down to -160 A to generate a braking electromagnetic torque (dynamic braking mode). This causes the DC bus voltage to increase. The braking chopper limits the voltage value.

At t = 3.4 s, the motor speed reaches 100 rpm and the current reverses back to 40 A.

At t = 4 s, the speed stabilizes around its reference.


1) The power system has been discretized with a 1 us time step. The speed and current controllers use a 100 us and 20 us sampling time respectively in order to simulate a microcontroller control device.

2) In order to reduce the number of points stored in the scope memory, a decimation factor of 25 is used. Some transitions may thus not appear on the scope. To view detailed simulation results, reduce the decimation factor to 1.

3) A simplified version of the model using an average-value converter can be used by selecting 'Average' in the 'Model detail level' menu of the graphical user-interface. The time step can then be increased up to the smallest control system sample time value. This can be done by typing 'Ts = 20e-6' in the workspace in the case of this example. See also dc6_example_simplified model.