Embedded AI Systems
Execute and deploy deep learning solutions on ARM®-based devices and embedded NVIDIA® GPUs. Generate code and use hardware to streamline signal segmentation, classification, and anomaly detection.
Related Information
Featured Examples
Deploy Signal Segmentation Deep Network on Raspberry Pi
Generate a MEX function and a standalone executable to perform waveform segmentation on a Raspberry Pi®.
Modulation Classification Using Wavelet Analysis on NVIDIA Jetson
Use wavelets to classify waveforms on a NVIDIA Jetson®.
(Wavelet Toolbox)
- Since R2021a
Classify ECG Signals Using DAG Network Deployed to FPGA
Classify human electrocardiogram (ECG) signals by deploying a trained directed acyclic graph (DAG) network.
(Deep Learning Toolbox)
Detect Air Compressor Sounds on a Raspberry Pi Using Wavelet Scattering and TensorFlow Lite Network
Generate and deploy Raspberry Pi code to detect air compressor sounds using the Wavelet Scattering Simulink® block and a pretrained deep learning network.
(DSP System Toolbox)
- Since R2025a
Deep Learning Code Generation on ARM for Fault Detection Using Wavelet Scattering and Recurrent Neural Networks
Perform acoustic-based fault detection on a Raspberry Pi using wavelet scattering and recurrent neural networks.
(Wavelet Toolbox)
- Since R2023a
Deploy Signal Classifier on NVIDIA Jetson Using Wavelet Analysis and Deep Learning
Generate and deploy a CUDA® executable to classify electrocardiogram signals using wavelet-derived features.
(Wavelet Toolbox)
Deploy Signal Classifier Using Wavelets and Deep Learning on Raspberry Pi
Classify human electrocardiogram signals on a Raspberry Pi using scalograms and a deep convolutional neural network.
(Wavelet Toolbox)
Code Generation for a Deep Learning Simulink Model to Classify ECG Signals
Create and deploy a Simulink model for signal classification using wavelet-based features.
(Deep Learning Toolbox)
Real-Time Noise Detection on Raspberry Pi Using Deep Signal Anomaly Detector
Detect the presence of noise on a Raspberry Pi device.
(Deep Learning Toolbox)
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)








