probdefault
Likelihood of default for given dataset for a
compactCreditScorecard object
Description
computes the probability of default for the pd = probdefault(csc,data)compactCreditScorecard (csc) based on the
data.
Examples
To create a compactCreditScorecard object, first create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardData.mat
sc = creditscorecard(data)sc =
creditscorecard with properties:
GoodLabel: 0
ResponseVar: 'status'
WeightsVar: ''
VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
BinMissingData: 0
IDVar: ''
PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
Data: [1200×11 table]
Before creating a compactCreditScorecard object, you must use autobinning and fitmodel with the creditscorecard object.
sc = autobinning(sc); sc = fitmodel(sc);
1. Adding CustIncome, Deviance = 1490.8527, Chi2Stat = 32.588614, PValue = 1.1387992e-08
2. Adding TmWBank, Deviance = 1467.1415, Chi2Stat = 23.711203, PValue = 1.1192909e-06
3. Adding AMBalance, Deviance = 1455.5715, Chi2Stat = 11.569967, PValue = 0.00067025601
4. Adding EmpStatus, Deviance = 1447.3451, Chi2Stat = 8.2264038, PValue = 0.0041285257
5. Adding CustAge, Deviance = 1441.994, Chi2Stat = 5.3511754, PValue = 0.020708306
6. Adding ResStatus, Deviance = 1437.8756, Chi2Stat = 4.118404, PValue = 0.042419078
7. Adding OtherCC, Deviance = 1433.707, Chi2Stat = 4.1686018, PValue = 0.041179769
Generalized linear regression model:
logit(status) ~ 1 + CustAge + ResStatus + EmpStatus + CustIncome + TmWBank + OtherCC + AMBalance
Distribution = Binomial
Estimated Coefficients:
Estimate SE tStat pValue
________ ________ ______ __________
(Intercept) 0.70239 0.064001 10.975 5.0538e-28
CustAge 0.60833 0.24932 2.44 0.014687
ResStatus 1.377 0.65272 2.1097 0.034888
EmpStatus 0.88565 0.293 3.0227 0.0025055
CustIncome 0.70164 0.21844 3.2121 0.0013179
TmWBank 1.1074 0.23271 4.7589 1.9464e-06
OtherCC 1.0883 0.52912 2.0569 0.039696
AMBalance 1.045 0.32214 3.2439 0.0011792
1200 observations, 1192 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 89.7, p-value = 1.4e-16
Use the creditscorecard object with compactCreditScorecard to create a compactCreditScorecard object.
csc = compactCreditScorecard(sc)
csc =
compactCreditScorecard with properties:
Description: ''
GoodLabel: 0
ResponseVar: 'status'
WeightsVar: ''
NumericPredictors: {'CustAge' 'CustIncome' 'TmWBank' 'AMBalance'}
CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
PredictorVars: {'CustAge' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance'}
Then use probdefault with the compactCreditScorecard object. For the purpose of illustration, suppose that a few rows from the original data are our "new" data. Use the data input argument in the probdefault function to obtain the probability of default using the newdata.
newdata = data(10:20,:); pd = probdefault(csc,newdata)
pd = 11×1
0.3047
0.3418
0.2237
0.2793
0.3615
0.1653
0.3799
0.4055
0.4269
0.1915
0.3049
⋮
Input Arguments
Credit scorecard model, specified as a compactCreditScorecard object.
To create a compactCreditScorecard object, use
compactCreditScorecard or compact from
Financial Toolbox™.
Dataset to apply probability of default rules, specified as a
MATLAB® table, where each row corresponds to individual
observations. The data must contain columns for each of the predictors
in the compactCreditScorecard object.
Data Types: table
Output Arguments
Probability of default, returned as a
NumObs-by-1 numerical array of
default probabilities.
More About
After the unscaled scores are computed (see Algorithms for Computing and Scaling Scores), the probability of the points being “Good” is represented by the following formula:
ProbGood = 1./(1 + exp(-UnscaledScores))
Thus, the probability of default is
pd = 1 - ProbGood
References
[1] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.
Version History
Introduced in R2019a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)