getreg
Regressor expressions and numerical values in nonlinear ARX model
Syntax
Rs = getreg(model)
Rm = getreg(model,data)
Rm = getreg(model,data,init)
Rm = getreg(___,'Type',regressorType)
Description
Rs = getreg(model)
returns expressions for computing regressors
in the nonlinear ARX model. model
is an idnlarx
object. A typical use of the regression matrices built by
getreg
is to generate input data when you want to evaluate the
output of a mapping function such as idWaveletNetwork
using evaluate
. For example, the following pair of commands evaluates the
output of a mapping function
model
.
Regressor_Value = getreg(model,data,'z')
y = evaluate(model.OutputFcn,RegressorValue)
y = predict(model,data,1,predictOptions('InitialCondition','z'))
Rm = getreg(model,data)
returns regressor values as a timetable
for the specified input/output data set
data
. data
can be a timetable, a
comma-separated pair of input and output matrices, or an iddata
object.
Rm = getreg(model,data,init)
uses the initial conditions that are
specified in init
. The first N
rows of each
regressor matrix depend on the initial states init
, where
N
is the maximum delay in the regressors (see
getDelayInfo
).
Rm = getreg(___,'Type',
returns the names of the regressors of the specified regressorType
)regressorType
.
For example, use the command Rm = getreg(model,'Type','input')
to
return the names of only the input regressors.
Input Arguments
data
Timetable, comma-separated pair of numeric input/output matrices u,y, or
iddata
object containing measured data consisting of the values of the input and output variables corresponding to[model.InputName]
and[model.OutputName]
.init
Initial conditions of your data:
'z'
(default) specifies zero initial state.NaN
denotes unknown initial conditions.Real column vector containing the initial state values. For more information on initial states, see Definition of idnlarx States in
idnlarx
. For multiple-experiment data, this is a matrix where each column specifies the initial state of the model corresponding to that experiment.iddata
object containing input and output samples at time instants before to the first sample indata
. When theiddata
object contains more samples than the maximum delay in the model, only the most recent samples are used. The number of samples required is equal tomax(getDelayInfo(model))
.
model
iddata
object representing nonlinear ARX model.regressorType
Type of regressor to return, specified as one of the following:
'all'
(default) — All regressors'input'
— Only input regressors'output'
— Only output regressors'standard'
— Only linear and polynomial regressors'custom'
— Only custom regressors
Output Arguments
Rm
timetable
of regressor values for all or a specified subset of regressors. Each column inRm
contains as many rows as there are data samples. For a model withnr
regressors,Rm
contains one column for each regressor. Whendata
contains multiple experiments,Rm
is a cell array where each element corresponds to a timetable of regressor values for an experiment.Rs
Regressor expressions represented as a cell array of character vectors. For example, the expression
'u1(t-2)'
computes the regressor by delaying the input signalu1
by two time samples. Similarly, the expression'y2(t-1)'
computes the regressor by delaying the output signaly2
by one time sample.The order of regressors in
Rs
corresponds to regressor indices in theidnlarx
object propertymodel.RegressorUsage
.
Examples
Version History
Introduced in R2007aSee Also
idnlarx
| linearRegressor
| polynomialRegressor
| customRegressor
| evaluate