Obtaining Efficient Portfolios for Target Risks
To obtain efficient portfolios that have targeted portfolio risks, the estimateFrontierByRisk
function accepts one or more target portfolio
risks and obtains efficient portfolios with the specified risks. Suppose that you have a
universe of four assets where you want to obtain efficient portfolios with target
portfolio risks of 12%, 14%, and
16%.
m = [ 0.05; 0.1; 0.12; 0.18 ]; C = [ 0.0064 0.00408 0.00192 0; 0.00408 0.0289 0.0204 0.0119; 0.00192 0.0204 0.0576 0.0336; 0 0.0119 0.0336 0.1225 ]; p = Portfolio; p = setAssetMoments(p, m, C); p = setDefaultConstraints(p); pwgt = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]); display(pwgt)
pwgt = 0.3984 0.2659 0.1416 0.3064 0.3791 0.4474 0.0882 0.1010 0.1131 0.2071 0.2540 0.2979
Sometimes, you can request a risk for which no efficient portfolio exists. Based on the
previous example, suppose that you want a portfolio with 7% risk (individual assets in
this universe have risks ranging from 8% to 35%). It turns out that a portfolio with 7%
risk cannot be formed with these four assets. estimateFrontierByRisk
warns if your target risks are outside the range
of efficient portfolio risks and replaces it with the endpoint of the efficient frontier
closest to your target risk:
pwgt = estimateFrontierByRisk(p, 0.07)
Warning: One or more target risk values are outside the feasible range [ 0.0769288, 0.35 ]. Will return portfolios associated with endpoints of the range for these values. > In Portfolio.estimateFrontierByRisk at 82 pwgt = 0.8891 0.0369 0.0404 0.0336
estimateFrontierLimits
and estimatePortRisk
(see Obtaining Endpoints of the Efficient Frontier and Obtaining Portfolio Risks and Returns).prsk = estimatePortRisk(p, p.estimateFrontierLimits); display(prsk)
prsk = 0.0769 0.3500
Starting with an initial portfolio, estimateFrontierByRisk
also returns
purchases and sales to get from your initial portfolio to the target portfolios on the
efficient frontier. For example, given an initial portfolio in pwgt0
,
you can obtain purchases and sales from the example with target risks of 12%, 14%, and
16%:
pwgt0 = [ 0.3; 0.3; 0.2; 0.1 ]; p = setInitPort(p, pwgt0); [pwgt, pbuy, psell] = estimateFrontierByRisk(p, [0.12, 0.14, 0.16]); display(pwgt) display(pbuy) display(psell)
pwgt = 0.3984 0.2659 0.1416 0.3064 0.3791 0.4474 0.0882 0.1010 0.1131 0.2071 0.2540 0.2979 pbuy = 0.0984 0 0 0.0064 0.0791 0.1474 0 0 0 0.1071 0.1540 0.1979 psell = 0 0.0341 0.1584 0 0 0 0.1118 0.0990 0.0869 0 0 0
0
.
See Also
Portfolio
| estimateFrontier
| estimateFrontierLimits
| estimatePortMoments
| estimateFrontierByReturn
| estimatePortReturn
| estimatePortRisk
| estimateFrontierByRisk
| estimateMaxSharpeRatio
| setSolver
Related Examples
- Estimate Efficient Portfolios for Entire Efficient Frontier for Portfolio Object
- Creating the Portfolio Object
- Working with Portfolio Constraints Using Defaults
- Estimate Efficient Frontiers for Portfolio Object
- Asset Allocation Case Study
- Portfolio Optimization Examples Using Financial Toolbox
- Portfolio Optimization with Semicontinuous and Cardinality Constraints
- Black-Litterman Portfolio Optimization Using Financial Toolbox
- Portfolio Optimization Using Factor Models
- Portfolio Optimization Using Social Performance Measure
- Diversify Portfolios Using Custom Objective