Specify Default Regression Model with ARIMA Errors
This example shows how to specify the default regression model with ARIMA errors using the shorthand ARIMA(, , ) notation corresponding to the following equation:
Specify a regression model with ARIMA(3,1,2) errors.
Mdl = regARIMA(3,1,2)
Mdl =
regARIMA with properties:
Description: "ARIMA(3,1,2) Error Model (Gaussian Distribution)"
SeriesName: "Y"
Distribution: Name = "Gaussian"
Intercept: NaN
Beta: [1×0]
P: 4
D: 1
Q: 2
AR: {NaN NaN NaN} at lags [1 2 3]
SAR: {}
MA: {NaN NaN} at lags [1 2]
SMA: {}
Variance: NaN
The model specification for Mdl appears in the Command Window. By default, regARIMA sets:
The autoregressive (
AR) parameter values toNaNat lags[1 2 3]The moving average (
MA) parameter values toNaNat lags[1 2]The variance (
Variance) of the innovation process, , toNaNThe distribution (
Distribution) of toGaussianThe regression model intercept to
NaN
There is no regression component (Beta) by default.
The property:
P=p+D, which represents the number of presample observations that the software requires to initialize the autoregressive component of the model to perform, for example, estimation.Drepresents the level of nonseasonal integration.Qrepresents the number of presample observations that the software requires to initialize the moving average component of the model to perform, for example, estimation.
Fit Mdl to data by passing it and the data into estimate. If you pass the predictor series into estimate, then estimate estimates Beta by default.
You can modify the properties of Mdl using dot notation.
References:
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.
See Also
regARIMA | estimate | simulate | forecast
Topics
- Create Regression Models with ARIMA Errors
- Modify regARIMA Model Properties
- Create Regression Models with AR Errors
- Create Regression Models with MA Errors
- Create Regression Models with ARMA Errors
- Create Regression Models with SARIMA Errors
- Specify ARIMA Error Model Innovation Distribution
- Regression Models with Time Series Errors