Main Content

Data Alignment for Code Replacement

When using code replacement, if your implementation function requires aligned data to optimize application performance, align the arguments passed to the function by using the code replacement entry.

To perform data alignment without replacing the generated function, see Optimize Performance of Memory Access by Using Data Alignment.

Code Replacement Data Alignment

You can take advantage of function implementations that require aligned data to optimize application performance. To configure data alignment for a function implementation:

  1. Specify the data alignment requirements in a code replacement entry. Specify alignment separately for each implementation function argument or collectively for all function arguments. See Specify Data Alignment Requirements for Function Arguments.

    1. If the scope of the data is imported, you must also specify the alignment requirements on the data object so that the code replacement entry can match the data for replacement.

  2. Specify the data alignment capabilities and syntax for one or more compilers. Include the alignment specifications in a library registration entry in the rtwTargetInfo.m file. See Provide Data Alignment Specifications for Compilers.

  3. Register the library containing the table entry and alignment specification object.

  4. Configure the code generator to use the code replacement library and generate code. Observe the results.

For examples, see Basic Example of Code Replacement Data Alignment and the “Data Alignment for Function Implementations” section of the Optimize Generated Code by Developing and Using Code Replacement Libraries - Simulink example page.

Specify Data Alignment Requirements for Function Arguments

To specify the data alignment requirement for an argument in a code replacement entry:

  • If you are defining a replacement function in a code replacement table registration file, create an argument descriptor object (RTW.ArgumentDescriptor). Use its AlignmentBoundary property to specify the required alignment boundary and assign the object to the argument Descriptor property.

  • If you are defining a replacement function using the Code Replacement Tool, on the Mapping Information tab, in the Argument properties section for the replacement function, enter a value for the Alignment value parameter.

    Replacement function section for the replacement function sin_dbl.

The AlignmentBoundary property (or Alignment value parameter) specifies the alignment boundary for data passed to a function argument, in number of bytes. The AlignmentBoundary property is valid only for addressable objects, including matrix and pointer arguments. It is not applicable for value arguments. Valid values are:

  • -1 (default) — If the data is a Simulink.Bus, Simulink.Signal, or Simulink.Parameter object, specifies that the code generator determines an optimal alignment based on usage. Otherwise, specifies that there is not an alignment requirement for this argument.

  • Positive integer that is a power of 2 — Specifies number of bytes in the boundary. The starting memory address for the data allocated for the function argument is a multiple of the specified value. If you specify an alignment boundary that is less than the natural alignment of the argument data type, the alignment directive is emitted in the generated code. However, the target compiler ignores the directive.

The following code specifies the AlignmentBoundary for an argument as 16 bytes.

hLib = RTW.TflTable;
entry = RTW.TflCOperationEntry;
arg = getTflArgFromString(hLib, 'u1','single*');
desc = RTW.ArgumentDescriptor;
desc.AlignmentBoundary = 16;
arg.Descriptor = desc;
entry.Implementation.addArgument(arg);

The equivalent alignment boundary specification in the Code Replacement Tool dialog box is in this figure.

Argument properties section with the alignment value set to 16.

Specify Alignment for Imported Data

If the scope of the data is imported, you must also specify the alignment requirements on the data object so that the code replacement entry can match the data for replacement. Specifying the alignment on the data object indicates to the code generator that the external code that defines the data performs the alignment.

Specify the alignment boundary by using the Alignment property of the Simulink.Bus, Simulink.Signal, or Simulink.Parameter object. For more information, see Specify Data Alignment Requirements for Data Object.

Provide Data Alignment Specifications for Compilers

To support data alignment in generated code, describe the data alignment capabilities and syntax for your compilers in the code replacement library registration. Provide one or more alignment specifications for each compiler in a library registry entry.

  • If you are defining a code replacement library registration entry in a rtwTargetInfo.m customization file, add one or more AlignmentSpecification objects to an RTW.DataAlignment object. Attach the RTW.DataAlignment object to the TargetCharacteristics object of the registry entry.

    An example of a data alignment specification for the GCC compiler follows.

    da = RTW.DataAlignment;
    
    as = RTW.AlignmentSpecification;
    as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...
                        'DATA_ALIGNMENT_STRUCT_FIELD', ...
                        'DATA_ALIGNMENT_GLOBAL_VAR'};
    as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';
    as.AlignmentPosition = 'DATA_ALIGNMENT_PREDIRECTIVE';
    as.SupportedLanguages = {'c', 'c++'};
    da.addAlignmentSpecification(as);
    
    tc = RTW.TargetCharacteristics;
    tc.DataAlignment = da;

    The RTW.DataAlignment object also has the property DefaultMallocAlignment, which specifies the default alignment boundary, in bytes, that the compiler uses for dynamically allocated memory. If the code generator uses dynamic memory allocation for a data object involved in a code replacement, this value determines if the memory satisfies the alignment requirement of the replacement. If not, the code generator does not use the replacement. The default value for DefaultMallocAlignment is -1, indicating that the default alignment boundary used for dynamically allocated memory is unknown. In this case, the code generator uses the natural alignment of the data type to determine whether to allow a replacement.

    Additionally, you can specify the alignment boundary for complex types by using the addComplexTypeAlignment function.

  • If you are generating a customization file function using the Code Replacement Tool, fill out the following fields for each compiler.

    Generate registration file dialog showing the Generate data alignment specification option selected. The Alignment Specification 1 section shows the options alignment type, alignment position, alignment syntax, and supported languages.

    Click the plus (+) symbol to add additional compiler specifications.

    Here is the specification for the GCC compiler in the Generate registration file dialog box of the Code Replacement Tool.

    Data alignment specifications in the Generate registration file dialog box.

For each data alignment specification, provide the following information.

AlignmentSpecification Property

Dialog Box Parameter

Description

AlignmentType

Alignment type

Cell array of predefined enumerated strings specifying the types of alignment this specification supports.

  • DATA_ALIGNMENT_LOCAL_VAR — Local variables

  • DATA_ALIGNMENT_GLOBAL_VAR — Global variables

  • DATA_ALIGNMENT_STRUCT_FIELD — Individual structure fields

  • DATA_ALIGNMENT_WHOLE_STRUCT — Whole structure, with padding (individual structure field alignment, if specified, is favored by the code generator and takes precedence over whole structure alignment)

Each alignment specification must specify at least DATA_ALIGNMENT_GLOBAL_VAR and DATA_ALIGNMENT_STRUCT_FIELD.

AlignmentPosition

Alignment position

Predefined enumerated string specifying the position in which you must place the compiler alignment directive for the alignment type DATA_ALIGNMENT_WHOLE_STRUCT:

  • DATA_ALIGNMENT_PREDIRECTIVE — The alignment directive is emitted before struct st_tag{…} as part of the type definition statement (for example, MSVC).

  • DATA_ALIGNMENT_POSTDIRECTIVE — The alignment directive is emitted after struct st_tag{…} as part of the type definition statement (for example, gcc).

  • DATA_ALIGNMENT_PRECEDING_STATEMENT — The alignment directive is emitted as a standalone statement immediately preceding the definition of the structure type. A semicolon (;) must terminate the registered alignment syntax.

  • DATA_ALIGNMENT_FOLLOWING_STATEMENT — The alignment directive is emitted as a standalone statement immediately following the definition of the structure type. A semicolon (;) must terminate the registered alignment syntax.

For alignment types other than DATA_ALIGNMENT_WHOLE_STRUCT, code generation uses the alignment position DATA_ALIGNMENT_PREDIRECTIVE.

AlignmentSyntaxTemplate

Alignment syntax

Specify the alignment directive string that the compiler supports. The string is registered as a syntax template that has placeholders in it. These placeholders are supported:

  • %n — Replaced by the alignment boundary for the replacement function argument.

  • %s — Replaced by the aligned symbol, usually the identifier of a variable.

For example, for the gcc compiler, you can specify __attribute__((aligned(%n))), or for the MSVC compiler, __declspec(align(%n)).

SupportedLanguages

Supported languages

Cell array specifying the languages to which this alignment specification applies, among c and c++. Sometimes, alignment syntax and position differ between languages for a compiler.

Basic Example of Code Replacement Data Alignment

A simple example of the complete workflow for data alignment specified for code replacement is:

  1. Create and save the following code replacement table definition file, crl_table_mmul_4x4_single_align.m. This table defines a replacement entry for the * (multiplication) operator, the single data type, and input dimensions [4,4]. The entry also specifies a data alignment boundary of 16 bytes for each replacement function argument. The entry expresses the requirement that the starting memory address for the data allocated for the function arguments during code generation is a multiple of 16.

    function hLib = crl_table_mmul_4x4_single_align
    %CRL_TABLE_MMUL_4x4_SINGLE_ALIGN - Describe matrix operator entry with data alignment
    
    hLib = RTW.TflTable;
    entry = RTW.TflCOperationEntry;
    setTflCOperationEntryParameters(entry, ...
        'Key',                   'RTW_OP_MUL', ...
        'Priority',              90, ...
        'ImplementationName',    'matrix_mul_4x4_s');
    
    % conceptual arguments
    createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...
                                    'Name',         'y1', ...
                                    'IOType',       'RTW_IO_OUTPUT', ...
                                    'BaseType',     'single', ...
                                    'DimRange',     [4 4]);
    
    createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...
                                    'Name',         'u1', ...
                                    'BaseType',     'single', ...
                                    'DimRange',     [4 4]);
    
    createAndAddConceptualArg(entry, 'RTW.TflArgMatrix',...
                                    'Name',         'u2', ...
                                    'BaseType',     'single', ...
                                    'DimRange',     [4 4]);
    
    % implementation arguments
    arg = getTflArgFromString(hLib, 'y2', 'void');
    arg.IOType = 'RTW_IO_OUTPUT';
    entry.Implementation.setReturn(arg);
    
    arg = getTflArgFromString(hLib, 'y1','single*');
    arg.IOType = 'RTW_IO_OUTPUT';
    desc = RTW.ArgumentDescriptor;
    desc.AlignmentBoundary = 16;
    arg.Descriptor = desc;
    entry.Implementation.addArgument(arg);
    
    arg = getTflArgFromString(hLib, 'u1','single*');
    desc = RTW.ArgumentDescriptor;
    desc.AlignmentBoundary = 16;
    arg.Descriptor = desc;
    entry.Implementation.addArgument(arg);
    
    arg = getTflArgFromString(hLib, 'u2','single*');
    desc = RTW.ArgumentDescriptor;
    desc.AlignmentBoundary = 16;
    arg.Descriptor = desc;
    entry.Implementation.addArgument(arg);
    
    hLib.addEntry(entry);
  2. Create and save the following registration file, rtwTargetInfo.m. If you want to compile the code generated in this example, first modify the AlignmentSyntaxTemplate property for the compiler that you use. For example, for the MSVC compiler, replace the gcc template specification __attribute__((aligned(%n))) with __declspec(align(%n)).

    function rtwTargetInfo(cm)
    % rtwTargetInfo function to register a code replacement library (CRL)
    % for use with  code generation
    
      % Register the CRL defined in local function locCrlRegFcn
      cm.registerTargetInfo(@locCrlRegFcn);
    
    end % End of RTWTARGETINFO
    
    % Local function to define a CRL containing crl_table_mmul_4x4_single_align
    function thisCrl = locCrlRegFcn
    
      % create an alignment specification object, assume gcc
      as = RTW.AlignmentSpecification;
      as.AlignmentType = {'DATA_ALIGNMENT_LOCAL_VAR', ...
                          'DATA_ALIGNMENT_GLOBAL_VAR', ...
                          'DATA_ALIGNMENT_STRUCT_FIELD'};
      as.AlignmentSyntaxTemplate = '__attribute__((aligned(%n)))';
      as.SupportedLanguages={'c', 'c++'};
    
      % add the alignment specification object
      da = RTW.DataAlignment;
      da.addAlignmentSpecification(as);
    
      % add the data alignment object to target characteristics
      tc = RTW.TargetCharacteristics;
      tc.DataAlignment = da;
    
      % Instantiate a CRL registry entry
      thisCrl = RTW.TflRegistry;
    
      % Define the CRL properties
      thisCrl.Name = 'Data Alignment Example';
      thisCrl.Description = 'Example of replacement with data alignment';
      thisCrl.TableList = {'crl_table_mmul_4x4_single_align'};
        thisCrl.TargetCharacteristics = tc;
    
    end % End of LOCCRLREGFCN
  3. To register your library with code generator without having to restart MATLAB®, enter this command:

    RTW.TargetRegistry.getInstance('reset');
  4. Configure the code generator to use your code replacement library.

  5. Generate code and a code generation report.

  6. Review the code replacements. For example, check whether a multiplication operation is replaced with a matrix_mul_4x4_s function call. In mmalign.h, check whether the gcc alignment directive __attribute__((aligned(16))) is generated to align the function variables.

Related Topics