image3dInputLayer
3-D image input layer
Description
A 3-D image input layer inputs 3-D images or volumes to a neural network and applies data normalization.
For 2-D image input, use imageInputLayer.
Creation
Description
sets optional properties using one or more name-value arguments.layer = image3dInputLayer(inputSize,Name=Value)
Input Arguments
Size of the input data, specified as a row vector of integers [h w d
c], where h, w,
d, and c correspond to the height, width, depth,
and number of channels respectively.
For grayscale input, specify a vector with
cequal to1.For RGB input, specify a vector with
cequal to3.For multispectral or hyperspectral input, specify a vector with
cequal to the number of channels.
For 2-D image input, use imageInputLayer.
Example:
[132 132 116 3]
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and
enclose
Name
in quotes.
Example: image3dInputLayer([132 132 116 3],Name="input") creates a
3-D image input layer for 132-by-132-by-116 color 3-D images with name
'input'.
Data normalization to apply every time data is forward propagated through the input layer, specified as one of the following:
"zerocenter"— Subtract the mean specified byMean."zscore"— Subtract the mean specified byMeanand divide byStandardDeviation."rescale-symmetric"— Rescale the input to be in the range [-1, 1] using the minimum and maximum values specified byMinandMax, respectively."rescale-zero-one"— Rescale the input to be in the range [0, 1] using the minimum and maximum values specified byMinandMax, respectively."none"— Do not normalize the input data.function handle — Normalize the data using the specified function. The function must be of the form
Y = f(X), whereXis the input data and the outputYis the normalized data.
This layer supports complex-valued data. (since R2024a)
To input complex-valued data into the network, the
Normalization option must be "zerocenter",
"zscore", "none", or a function
handle.
Tip
The software, by default, automatically calculates the normalization
statistics when you use the trainnet function. To save time when training, specify the required
statistics for normalization and set the ResetInputNormalization option in trainingOptions to 0
(false).
The Image3DInputLayer object stores the
Normalization property as a character vector or a function
handle.
Normalization dimension, specified as one of the following:
"auto"– If theResetInputNormalizationtraining option is0(false) and you specify any of the normalization statistics (Mean,StandardDeviation,Min, orMax), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization."channel"– Channel-wise normalization."element"– Element-wise normalization."all"– Normalize all values using scalar statistics.
The Image3DInputLayer object stores the
NormalizationDimension property as a character
vector.
Mean for zero-center and z-score normalization, specified as a
h-by-w-by-d-by-c
array, a 1-by-1-by-1-by-c array of means per channel, a numeric
scalar, or [], where h, w,
d, and c correspond to the height, width,
depth, and the number of channels of the mean, respectively.
To specify the Mean property, the Normalization property must be
"zerocenter" or "zscore". If Mean is [], then the software
automatically sets the property at training or initialization time:
The
trainnetfunction calculates the mean using the training data and uses the resulting value.The
initializefunction and thedlnetworkfunction when theInitializeoption is1(true) sets the property to0.
Before R2024a: This option does not support complex-valued data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes
Standard deviation for z-score normalization, specified as a
h-by-w-by-d-by-c
array, a 1-by-1-by-1-by-c array of means per channel, a numeric
scalar, or [], where h, w,
d, and c correspond to the height, width,
depth, and the number of channels of the standard deviation, respectively.
To specify the StandardDeviation property,
the Normalization property must be
"zscore". If StandardDeviation is [], then the software
automatically sets the property at training or initialization time:
The
trainnetfunction calculates the standard deviation using the training data and uses the resulting value.The
initializefunction and thedlnetworkfunction when theInitializeoption is1(true) sets the property to1.
Before R2024a: This option does not support complex-valued data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes
Minimum value for rescaling, specified as a
h-by-w-by-d-by-c
array, a 1-by-1-by-1-by-c array of minima per channel, a numeric
scalar, or [], where h, w,
d, and c correspond to the height, width,
depth, and the number of channels of the minima, respectively.
To specify the Min property, the Normalization must be
"rescale-symmetric" or "rescale-zero-one".
If Min is [], then the
software automatically sets the property at training or initialization time:
The
trainnetfunction calculates the minimum value using the training data and uses the resulting value.The
initializefunction and thedlnetworkfunction when theInitializeoption is1(true) sets the property to-1and0whenNormalizationis"rescale-symmetric"and"rescale-zero-one", respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Maximum value for rescaling, specified as a
h-by-w-by-d-by-c
array, a 1-by-1-by-1-by-c array of maxima per channel, a numeric
scalar, or [], where h, w,
d, and c correspond to the height, width,
depth, and the number of channels of the maxima, respectively.
To specify the Max property, the Normalization must be
"rescale-symmetric" or "rescale-zero-one".
If Max is [], then the
software automatically sets the property at training or initialization time:
The
trainnetfunction calculates the maximum value using the training data and uses the resulting value.The
initializefunction and thedlnetworkfunction when theInitializeoption is1(true) sets the property to1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Properties
3-D Image Input
Size of the input data, specified as a row vector of integers [h w d
c], where h, w,
d, and c correspond to the height, width, depth,
and number of channels respectively.
For grayscale input, specify a vector with
cequal to1.For RGB input, specify a vector with
cequal to3.For multispectral or hyperspectral input, specify a vector with
cequal to the number of channels.
For 2-D image input, use imageInputLayer.
Example:
[132 132 116 3]
Data normalization to apply every time data is forward propagated through the input layer, specified as one of the following:
"zerocenter"— Subtract the mean specified byMean."zscore"— Subtract the mean specified byMeanand divide byStandardDeviation."rescale-symmetric"— Rescale the input to be in the range [-1, 1] using the minimum and maximum values specified byMinandMax, respectively."rescale-zero-one"— Rescale the input to be in the range [0, 1] using the minimum and maximum values specified byMinandMax, respectively."none"— Do not normalize the input data.function handle — Normalize the data using the specified function. The function must be of the form
Y = f(X), whereXis the input data and the outputYis the normalized data.
This layer supports complex-valued data. (since R2024a) To
input complex-valued data into the network, the Normalization
option must be "zerocenter", "zscore",
"none", or a function handle.
Tip
The software, by default, automatically calculates the normalization
statistics when you use the trainnet function. To save time when training, specify the required
statistics for normalization and set the ResetInputNormalization option in trainingOptions to 0
(false).
The Image3DInputLayer object stores this property as a character vector or a
function handle.
Normalization dimension, specified as one of the following:
"auto"– If theResetInputNormalizationtraining option is0(false) and you specify any of the normalization statistics (Mean,StandardDeviation,Min, orMax), then normalize over the dimensions matching the statistics. Otherwise, recalculate the statistics at training time and apply channel-wise normalization."channel"– Channel-wise normalization."element"– Element-wise normalization."all"– Normalize all values using scalar statistics.
The Image3DInputLayer object stores this property as a character vector.
Mean for zero-center and z-score normalization, specified as a
h-by-w-by-d-by-c
array, a 1-by-1-by-1-by-c array of means per channel, a numeric
scalar, or [], where h, w,
d, and c correspond to the height, width,
depth, and the number of channels of the mean, respectively.
To specify the Mean property, the Normalization property must be "zerocenter"
or "zscore". If Mean is
[], then the software automatically sets the property at training or
initialization time:
The
trainnetfunction calculates the mean using the training data and uses the resulting value.The
initializefunction and thedlnetworkfunction when theInitializeoption is1(true) sets the property to0.
Before R2024a: This option does not support complex-valued data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes
Standard deviation for z-score normalization, specified as a
h-by-w-by-d-by-c
array, a 1-by-1-by-1-by-c array of means per channel, a numeric
scalar, or [], where h, w,
d, and c correspond to the height, width,
depth, and the number of channels of the standard deviation, respectively.
To specify the StandardDeviation property, the
Normalization property must be
"zscore". If StandardDeviation is
[], then the software automatically sets the property at training or
initialization time:
The
trainnetfunction calculates the standard deviation using the training data and uses the resulting value.The
initializefunction and thedlnetworkfunction when theInitializeoption is1(true) sets the property to1.
Before R2024a: This option does not support complex-valued data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes
Minimum value for rescaling, specified as a
h-by-w-by-d-by-c
array, a 1-by-1-by-1-by-c array of minima per channel, a numeric
scalar, or [], where h, w,
d, and c correspond to the height, width,
depth, and the number of channels of the minima, respectively.
To specify the Min property, the Normalization must be "rescale-symmetric" or
"rescale-zero-one". If Min is
[], then the software automatically sets the property at training or
initialization time:
The
trainnetfunction calculates the minimum value using the training data and uses the resulting value.The
initializefunction and thedlnetworkfunction when theInitializeoption is1(true) sets the property to-1and0whenNormalizationis"rescale-symmetric"and"rescale-zero-one", respectively.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Maximum value for rescaling, specified as a
h-by-w-by-d-by-c
array, a 1-by-1-by-1-by-c array of maxima per channel, a numeric
scalar, or [], where h, w,
d, and c correspond to the height, width,
depth, and the number of channels of the maxima, respectively.
To specify the Max property, the Normalization must be "rescale-symmetric" or
"rescale-zero-one". If Max is
[], then the software automatically sets the property at training or
initialization time:
The
trainnetfunction calculates the maximum value using the training data and uses the resulting value.The
initializefunction and thedlnetworkfunction when theInitializeoption is1(true) sets the property to1.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Layer
This property is read-only.
Number of inputs of the layer. The layer has no inputs.
Data Types: double
This property is read-only.
Input names of the layer. The layer has no inputs.
Data Types: cell
This property is read-only.
Number of outputs from the layer, stored as 1. This layer has a
single output only.
Data Types: double
This property is read-only.
Output names, stored as {'out'}. This layer has a single output
only.
Data Types: cell
Examples
Create a 3-D image input layer for 132-by-132-by-116 color 3-D images
layer = image3dInputLayer([132 132 116])
layer =
Image3DInputLayer with properties:
Name: ''
InputSize: [132 132 116 1]
Hyperparameters
Normalization: 'zerocenter'
NormalizationDimension: 'auto'
Mean: []
Include a 3-D image input layer in a Layer array.
layers = [
image3dInputLayer([28 28 28 3])
convolution3dLayer(5,16,Stride=4)
reluLayer
maxPooling3dLayer(2,Stride=4)
fullyConnectedLayer(10)
softmaxLayer]layers =
6×1 Layer array with layers:
1 '' 3-D Image Input 28×28×28×3 images with 'zerocenter' normalization
2 '' 3-D Convolution 16 5×5×5 convolutions with stride [4 4 4] and padding [0 0 0; 0 0 0]
3 '' ReLU ReLU
4 '' 3-D Max Pooling 2×2×2 max pooling with stride [4 4 4] and padding [0 0 0; 0 0 0]
5 '' Fully Connected 10 fully connected layer
6 '' Softmax softmax
Algorithms
Layers in a layer array or layer graph pass data to subsequent layers as formatted dlarray objects.
The format of a dlarray object is a string of characters in which each
character describes the corresponding dimension of the data. The format consists of one or
more of these characters:
"S"— Spatial"C"— Channel"B"— Batch"T"— Time"U"— Unspecified
For example, you can describe 2-D image data that is represented as a 4-D array, where the
first two dimensions correspond to the spatial dimensions of the images, the third
dimension corresponds to the channels of the images, and the fourth dimension
corresponds to the batch dimension, as having the format "SSCB"
(spatial, spatial, channel, batch).
The input layer of a network specifies the layout of the data that the network expects. If you have data in a different layout, then specify the layout using the InputDataFormats training option.
The layer inputs
h-by-w-by-d-by-c-by-N
arrays to the network, where h, w,
d, and c are the height, width, depth, and number of
channels of the images, respectively, and N is the number of images. Data
in this layout has the data format "SSSCB" (spatial, spatial, spatial,
channel, batch).
Image3DInputLayer objects support passing
complex-valued data to subsequent layers. (since R2024a)
If the input data is complex-valued, then the Normalization option
must be "zerocenter", "zscore",
"none", or a function handle. The Mean and
StandardDeviation properties of the layer also support complex-valued
data for "zerocenter" and "zscore" normalization
options.
For an example showing how to train a network with complex-valued data, see Train Network with Complex-Valued Data.
Version History
Introduced in R2019aFor complex-valued input to the neural network, the layer passes complex-valued data to subsequent layers.
If the input data is complex-valued, then the Normalization option
must be "zerocenter", "zscore",
"none", or a function handle. The Mean and
StandardDeviation properties of the layer also support complex-valued
data for "zerocenter" and "zscore" normalization
options.
AverageImage will be removed. Use Mean instead. To update your code, replace all instances of AverageImage with Mean.
There are no differences between the properties that require additional updates to your
code.
Starting in R2019b, imageInputLayer and image3dInputLayer,
by default, use channel-wise normalization. In previous versions, these layers use
element-wise normalization. To reproduce this behavior, set the NormalizationDimension option of these layers to
'element'.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Website auswählen
Wählen Sie eine Website aus, um übersetzte Inhalte (sofern verfügbar) sowie lokale Veranstaltungen und Angebote anzuzeigen. Auf der Grundlage Ihres Standorts empfehlen wir Ihnen die folgende Auswahl: .
Sie können auch eine Website aus der folgenden Liste auswählen:
So erhalten Sie die bestmögliche Leistung auf der Website
Wählen Sie für die bestmögliche Website-Leistung die Website für China (auf Chinesisch oder Englisch). Andere landesspezifische Websites von MathWorks sind für Besuche von Ihrem Standort aus nicht optimiert.
Amerika
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)