CWE Rule 326
Description
Rule Description
The product stores or transmits sensitive data using an encryption scheme that is theoretically sound, but is not strong enough for the level of protection required.
Polyspace Implementation
The rule checker checks for these issues:
Constant block cipher initialization vector
Constant cipher key
Missing blinding for RSA algorithm
Missing block cipher initialization vector
Missing padding for RSA algorithm
Nonsecure parameters for key generation
Nonsecure RSA public exponent
Predictable cipher key
Weak cipher algorithm
Weak cipher mode
Weak padding for RSA algorithm
Examples
Constant block cipher initialization vector
This issue occurs when you use a constant for the initialization vector (IV) during encryption.
Using a constant IV is equivalent to not using an IV. Your encrypted data is vulnerable to dictionary attacks.
Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC (Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the encrypted output from the previous block. To protect the first block, these modes use a random initialization vector (IV). If you use a constant IV to encrypt multiple data streams that have a common beginning, your data becomes vulnerable to dictionary attacks.
Produce a random IV by using a strong random number generator.
For a list of random number generators that are cryptographically
weak, see Vulnerable pseudo-random
number generator
.
#include <openssl/evp.h> #include <stdlib.h> #define SIZE16 16 /* Using the cryptographic routines */ int func(EVP_CIPHER_CTX *ctx, unsigned char *key){ unsigned char iv[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9', '1','2','3','4','5','6','7'}; return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1); //Noncompliant }
In this example, the initialization vector iv
has
constants only. The constant initialization vector makes your cipher
vulnerable to dictionary attacks.
One possible correction is to use a strong random number generator
to produce the initialization vector. The corrected code here uses
the function RAND_bytes
declared in openssl/rand.h
.
#include <openssl/evp.h> #include <openssl/rand.h> #include <stdlib.h> #define SIZE16 16 /* Using the cryptographic routines */ int func(EVP_CIPHER_CTX *ctx, unsigned char *key){ unsigned char iv[SIZE16]; RAND_bytes(iv, 16); return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1); }
Constant cipher key
This issue occurs when you use a constant for the encryption or decryption key.
If you use a constant for the encryption or decryption key, an attacker can retrieve your key easily.
You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data encrypted using that key is not secure.
Produce a random key by using a strong random number generator.
For a list of random number generators that are cryptographically
weak, see Vulnerable pseudo-random
number generator
.
#include <openssl/evp.h> #include <stdlib.h> #define SIZE16 16 int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){ unsigned char key[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9', '1','2','3','4','5','6','7'}; return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1); //Noncompliant }
In this example, the cipher key, key
, has
constants only. An attacker can easily retrieve a constant key.
Use a strong random number generator to produce the cipher key.
The corrected code here uses the function RAND_bytes
declared
in openssl/rand.h
.
#include <openssl/evp.h> #include <openssl/rand.h> #include <stdlib.h> #define SIZE16 16 int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){ unsigned char key[SIZE16]; RAND_bytes(key, 16); return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1); }
Missing blinding for RSA algorithm
This issue occurs when you do not enable blinding for an RSA context object before using the object for decryption or signature verification.
For instance, you do not turn on blinding in the context object rsa
before this decryption
step:
ret = RSA_public_decrypt(in_len, in, out, rsa, RSA_PKCS1_PADDING)
Without blinding, the time it takes for the cryptographic operation to be completed has a correlation with the key value. An attacker can gather information about the RSA key by measuring the time for completion. Blinding removes this correlation and protects the decryption or verification operation against timing attacks.
Before performing RSA decryption or signature verification, enable blinding.
ret = RSA_blinding_on(rsa, NULL);
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; unsigned char *out_buf; int func(unsigned char *src, size_t len, RSA* rsa){ if (rsa == NULL) fatal_error(); RSA_blinding_off(rsa); return RSA_private_decrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING); //Noncompliant }
In this example, blinding is disabled for the context object
rsa
. Decryption with this context object can be vulnerable to
timing attacks.
One possible correction is to explicitly enable blinding before decryption.
Even if blinding might be enabled previously or by default, explicitly enabling
blinding ensures that the security of the current decryption step is not reliant
on the caller of func
.
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; unsigned char *out_buf; int func(unsigned char *src, size_t len, RSA* rsa){ if (rsa == NULL) fatal_error(); ret = RSA_blinding_on(rsa, NULL); if (ret <= 0) fatal_error(); return RSA_private_decrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING); }
Missing block cipher initialization vector
This issue occurs when you encrypt or decrypt data using a NULL initialization vector (IV).
Note
You can initialize your cipher context with a NULL initialization vector (IV). However, if your algorithm requires an IV, before the encryption or decryption step, you must associate the cipher context with a non-NULL IV.
Many block cipher modes use an initialization vector (IV) to prevent dictionary attacks. If you use a NULL IV, your encrypted data is vulnerable to such attacks.
Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC (Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the encrypted output from the previous block. To protect the first block, these modes use a random initialization vector (IV). If you use a NULL IV, you get the same ciphertext when encrypting the same plaintext. Your data becomes vulnerable to dictionary attacks.
Before your encryption or decryption steps
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)
ctx
with a non-NULL initialization
vector.ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)
#include <openssl/evp.h> #include <stdlib.h> #define fatal_error() abort() unsigned char *out_buf; int out_len; int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){ if (key == NULL) fatal_error(); /* Last argument is initialization vector */ EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, NULL); /* Update step with NULL initialization vector */ return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len); //Noncompliant }
In this example, the initialization vector associated with the
cipher context ctx
is NULL. If you use this context
to encrypt your data, your data is vulnerable to dictionary attacks.
Use a strong random number generator to produce the initialization
vector. The corrected code here uses the function RAND_bytes
declared
in openssl/rand.h
.
#include <openssl/evp.h> #include <openssl/rand.h> #include <stdlib.h> #define fatal_error() abort() #define SIZE16 16 unsigned char *out_buf; int out_len; int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){ if (key == NULL) fatal_error(); unsigned char iv[SIZE16]; RAND_bytes(iv, 16); /* Last argument is initialization vector */ EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv); /* Update step with non-NULL initialization vector */ return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len); }
Missing padding for RSA algorithm
This issue occurs when you perform RSA encryption or signature by using a context object without associating the object with a padding scheme.
For instance, you perform encryption by using a context object that was initially not associated with a specific padding.
ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_NO_PADDING); ... ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len)
Padding schemes remove determinism from the RSA algorithm and protect RSA operations from certain kinds of attack. Padding ensures that a given message does not lead to the same ciphertext each time it is encrypted. Without padding, an attacker can launch chosen-plaintext attacks against the cryptosystem.
Before performing an RSA operation, associate the context object with a padding scheme that is compatible with the operation.
Encryption: Use the OAEP padding scheme.
For instance, use the
EVP_PKEY_CTX_set_rsa_padding
function with the argumentRSA_PKCS1_OAEP_PADDING
or theRSA_padding_add_PKCS1_OAEP
function.You can also use the PKCS#1v1.5 or SSLv23 schemes. Be aware that these schemes are considered insecure.ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
You can then use functions such as
EVP_PKEY_encrypt
/EVP_PKEY_decrypt
orRSA_public_encrypt
/RSA_private_decrypt
on the context.Signature: Use the RSA-PSS padding scheme.
For instance, use the
EVP_PKEY_CTX_set_rsa_padding
function with the argumentRSA_PKCS1_PSS_PADDING
.You can also use the ANSI X9.31, PKCS#1v1.5, or SSLv23 schemes. Be aware that these schemes are considered insecure.ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);
You can then use functions such as the
EVP_PKEY_sign
-EVP_PKEY_verify
pair or theRSA_private_encrypt
-RSA_public_decrypt
pair on the context.
If you perform two kinds of operation with the same context, after the first operation, reset the padding scheme in the context before the second operation.
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; unsigned char *out_buf; size_t out_len; int func(unsigned char *src, size_t len){ EVP_PKEY_CTX *ctx; EVP_PKEY* pkey; /* Key generation */ ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA,NULL); if (ctx == NULL) fatal_error(); ret = EVP_PKEY_keygen_init(ctx); if (ret <= 0) fatal_error(); ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048); if (ret <= 0) fatal_error(); ret = EVP_PKEY_keygen(ctx, &pkey); if (ret <= 0) fatal_error(); /* Encryption */ EVP_PKEY_CTX_free(ctx); ctx = EVP_PKEY_CTX_new(pkey,NULL); if (ctx == NULL) fatal_error(); ret = EVP_PKEY_encrypt_init(ctx); if (ret <= 0) fatal_error(); return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len); //Noncompliant }
In this example, before encryption with EVP_PKEY_encrypt
, a
specific padding is not associated with the context object
ctx
.
One possible correction is to set the OAEP padding scheme in the context.
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; unsigned char *out_buf; size_t out_len; int func(unsigned char *src, size_t len){ EVP_PKEY_CTX *ctx; EVP_PKEY* pkey; /* Key generation */ ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA,NULL); if (ctx == NULL) fatal_error(); ret = EVP_PKEY_keygen_init(ctx); if (ret <= 0) fatal_error(); ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048); if (ret <= 0) fatal_error(); ret = EVP_PKEY_keygen(ctx, &pkey); if (ret <= 0) fatal_error(); /* Encryption */ EVP_PKEY_CTX_free(ctx); ctx = EVP_PKEY_CTX_new(pkey,NULL); if (ctx == NULL) fatal_error(); ret = EVP_PKEY_encrypt_init(ctx); ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING); if (ret <= 0) fatal_error(); if (ret <= 0) fatal_error(); return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len); }
Nonsecure parameters for key generation
This issue occurs when
you attempt key generation by using an EVP_PKEY_CTX
context object
that is associated with weak parameters. What constitutes a weak parameter depends on
the public key algorithm used. In the DSA algorithm, a weak parameter can be the result
of setting an insufficient parameter length.
For instance, you set the number of bits used for DSA parameter generation to 512 bits, and then use the parameters for key generation:
EVP_PKEY_CTX *pctx,*kctx; EVP_PKEY *params, *pkey; /* Initializations for parameter generation */ pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL); params = EVP_PKEY_new(); /* Parameter generation */ ret = EVP_PKEY_paramgen_init(pctx); ret = EVP_PKEY_CTX_set_dsa_paramgen_bits(pctx, KEYLEN_512BITS); ret = EVP_PKEY_paramgen(pctx, ¶ms); /* Initializations for key generation */ kctx = EVP_PKEY_CTX_new(params, NULL); pkey = EVP_PKEY_new(); /* Key generation */ ret = EVP_PKEY_keygen_init(kctx); ret = EVP_PKEY_keygen(kctx, &pkey);
Weak parameters lead to keys that are not sufficiently strong for encryption and expose sensitive information to known ways of attack.
Depending on the algorithm, use these parameters:
Diffie-Hellman (DH): Set the length of the DH prime parameter to 2048 bits.
Set the DH generator to 2 or 5.ret = EVP_PKEY_CTX_set_dh_paramgen_prime_len(pctx, 2048);
ret = EVP_PKEY_CTX_set_dh_paramgen_generator(pctx, 2);
Digital Signature Algorithm (DSA): Set the number of bits used for DSA parameter generation to 2048 bits.
ret = EVP_PKEY_CTX_set_dsa_paramgen_bits(pctx, 2048);
RSA: Set the RSA key length to 2048 bits.
ret = EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, 2048);
Elliptic curve (EC): Avoid using curves that are known to be broken, for instance,
X9_62_prime256v1
. Use, for instance,sect239k1
.ret = EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, NID_sect239k1);
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; int func(EVP_PKEY *pkey){ EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL); if (ctx == NULL) fatal_error(); ret = EVP_PKEY_keygen_init(ctx); if (ret <= 0) fatal_error(); ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 512); if (ret <= 0) fatal_error(); return EVP_PKEY_keygen(ctx, &pkey); //Noncompliant }
In this example, the RSA key generation uses 512 bits, which makes the generated key vulnerable to attacks.
Use 2048 bits for RSA key generation.
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; int func(EVP_PKEY *pkey){ EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL); if (ctx == NULL) fatal_error(); ret = EVP_PKEY_keygen_init(ctx); if (ret <= 0) fatal_error(); ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048); if (ret <= 0) fatal_error(); return EVP_PKEY_keygen(ctx, &pkey); }
Nonsecure RSA public exponent
This issue occurs when you attempt RSA key generation by using a context object that is associated with a low public exponent.
For instance, you set a public exponent of 3 in the context object, and then use it for key generation.
/* Set public exponent */ ret = BN_dec2bn(&pubexp, "3"); /* Initialize context */ ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL); pkey = EVP_PKEY_new(); ret = EVP_PKEY_keygen_init(kctx); /* Set public exponent in context */ ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp); /* Generate key */ ret = EVP_PKEY_keygen(kctx, &pkey);
A low RSA public exponent makes certain kinds of attacks more damaging, especially when a weak padding scheme is used or padding is not used at all.
It is recommended to use a public exponent of 65537. Using a higher public exponent can make the operations slower.
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; int func(EVP_PKEY *pkey){ BIGNUM* pubexp; EVP_PKEY_CTX* ctx; pubexp = BN_new(); if (pubexp == NULL) fatal_error(); ret = BN_set_word(pubexp, 3); if (ret <= 0) fatal_error(); ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL); if (ctx == NULL) fatal_error(); ret = EVP_PKEY_keygen_init(ctx); if (ret <= 0) fatal_error(); ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048); if (ret <= 0) fatal_error(); ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp); if (ret <= 0) fatal_error(); return EVP_PKEY_keygen(ctx, &pkey); //Noncompliant }
In this example, an RSA public exponent of 3 is associated with the context object
ctx
. The low exponent makes operations that use the generated
key vulnerable to certain attacks.
One possible correction is to use the recommended public exponent 65537.
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; int func(EVP_PKEY *pkey){ BIGNUM* pubexp; EVP_PKEY_CTX* ctx; pubexp = BN_new(); if (pubexp == NULL) fatal_error(); ret = BN_set_word(pubexp, 65537); if (ret <= 0) fatal_error(); ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL); if (ctx == NULL) fatal_error(); ret = EVP_PKEY_keygen_init(ctx); if (ret <= 0) fatal_error(); ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048); if (ret <= 0) fatal_error(); ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp); if (ret <= 0) fatal_error(); return EVP_PKEY_keygen(ctx, &pkey); }
Predictable cipher key
This issue occurs when you use a weak random number generator for the encryption or decryption key.
If you use a weak random number generator for the encryption or decryption key, an attacker can retrieve your key easily.
You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data encrypted using that key is not secure.
Use a strong pseudo-random number generator (PRNG) for the key. For instance:
Use an OS-level PRNG such as
/dev/random
on UNIX® orCryptGenRandom()
on Windows®Use an application-level PRNG such as Advanced Encryption Standard (AES) in Counter (CTR) mode, HMAC-SHA1, etc.
For a list of random number generators that are cryptographically
weak, see Vulnerable pseudo-random
number generator
.
#include <openssl/evp.h> #include <openssl/rand.h> #include <stdlib.h> #define SIZE16 16 int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){ unsigned char key[SIZE16]; RAND_pseudo_bytes(key, 16); return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1); //Noncompliant }
In this example, the function RAND_pseudo_bytes
declared
in openssl/rand.h
produces the cipher key. However,
the byte sequences that RAND_pseudo_bytes
generates
are not necessarily unpredictable.
One possible correction is to use a strong random number generator
to produce the cipher key. The corrected code here uses the function RAND_bytes
declared
in openssl/rand.h
.
#include <openssl/evp.h> #include <openssl/rand.h> #include <stdlib.h> #define SIZE16 16 int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){ unsigned char key[SIZE16]; RAND_bytes(key, 16); return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1); }
Weak cipher algorithm
This issue occurs when you associate a weak encryption algorithm with the cipher context.
Some encryption algorithms have known flaws. Though the OpenSSL library still supports the algorithms, you must avoid using them.
If your cipher algorithm is weak, an attacker can decrypt your data by exploiting a known flaw or brute force attacks.
Use algorithms that are well-studied and widely acknowledged as secure.
For instance, the Advanced Encryption Standard (AES) is a widely accepted cipher algorithm.
#include <openssl/evp.h> #include <stdlib.h> void func(unsigned char *key, unsigned char *iv) { EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); EVP_CIPHER_CTX_init(ctx); const EVP_CIPHER * ciph = EVP_des_cbc(); EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv); //Noncompliant }
In this example, the routine EVP_des_cbc()
invokes
the Data Encryption Standard (DES) algorithm, which is now considered
as non-secure and relatively slow.
One possible correction is to use the faster and more secure Advanced Encryption Standard (AES) algorithm instead.
#include <openssl/evp.h> #include <stdlib.h> void func(unsigned char *key, unsigned char *iv) { EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); EVP_CIPHER_CTX_init(ctx); const EVP_CIPHER * ciph = EVP_aes_128_cbc(); EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv); }
Weak cipher mode
This issue occurs when you associate a weak block cipher mode with the cipher context.
The cipher mode that is especially flagged by this defect is the Electronic Code Book (ECB) mode.
The ECB mode does not support protection against dictionary attacks.
An attacker can decrypt your data even using brute force attacks.
Use a cipher mode more secure than ECB.
For instance, the Cipher Block Chaining (CBC) mode protects against dictionary attacks by:
XOR-ing each block of data with the encrypted output from the previous block.
XOR-ing the first block of data with a random initialization vector (IV).
#include <openssl/evp.h> #include <stdlib.h> void func(unsigned char *key, unsigned char *iv) { EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); EVP_CIPHER_CTX_init(ctx); const EVP_CIPHER * ciph = EVP_aes_128_ecb(); EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv); //Noncompliant }
In this example, the routine EVP_aes_128_ecb()
invokes
the Advanced Encryption Standard (AES) algorithm in the Electronic
Code Book (ECB) mode. The ECB mode does not support protection against
dictionary attacks.
One possible correction is to use the Cipher Block Chaining (CBC) mode instead.
#include <openssl/evp.h> #include <stdlib.h> void func(unsigned char *key, unsigned char *iv) { EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); EVP_CIPHER_CTX_init(ctx); const EVP_CIPHER * ciph = EVP_aes_128_cbc(); EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv); }
Weak padding for RSA algorithm
This issue occurs when you perform RSA encryption or signature by using a context object that was previously associated with a weak padding scheme.
For instance, you perform encryption by using a context object that is associated with the PKCS#1v1.5 padding scheme. The scheme is considered insecure and has already been broken.
ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING); ... ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len)
Padding schemes remove determinism from the RSA algorithm and protect RSA operations from certain kinds of attacks. Padding schemes such as PKCS#1v1.5, ANSI X9.31, and SSLv23 are known to be vulnerable. Do not use these padding schemes for encryption or signature operations.
Before performing an RSA operation, associate the context object with a strong padding scheme.
Encryption: Use the OAEP padding scheme.
For instance, use the
EVP_PKEY_CTX_set_rsa_padding
function with the argumentRSA_PKCS1_OAEP_PADDING
or theRSA_padding_add_PKCS1_OAEP
function.ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
You can then use functions such as
EVP_PKEY_encrypt
/EVP_PKEY_decrypt
orRSA_public_encrypt
/RSA_private_decrypt
on the context.Signature: Use the RSA-PSS padding scheme.
For instance, use the
EVP_PKEY_CTX_set_rsa_padding
function with the argumentRSA_PKCS1_PSS_PADDING
.ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);
You can then use functions such as the
EVP_PKEY_sign
-EVP_PKEY_verify
pair or theRSA_private_encrypt
-RSA_public_decrypt
pair on the context.
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; unsigned char *out_buf; int func(unsigned char *src, size_t len, RSA* rsa){ if (rsa == NULL) fatal_error(); return RSA_public_encrypt(len, src, out_buf, rsa, RSA_PKCS1_PADDING); //Noncompliant }
In this example, the PKCS#1v1.5 padding scheme is used in the encryption step.
Use the OAEP padding scheme for stronger encryption.
#include <stddef.h> #include <openssl/rsa.h> #include <openssl/evp.h> #define fatal_error() exit(-1) int ret; unsigned char *out_buf; int func(unsigned char *src, size_t len, RSA* rsa){ if (rsa == NULL) fatal_error(); return RSA_public_encrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING); }
Check Information
Category: Others |
Version History
Introduced in R2024a
See Also
External Websites
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)