rollingMedian

Version 1.0.0 (21,1 KB) von Peter Cook
C-MEX for 2D Rolling Median
39 Downloads
Aktualisiert 26. Jun 2019

B = rollingMedian(A, R, C) Performs median filtering of the
matrix A in two dimensions with minimal edge effects and phase shift.
Inputs
------
A : Input Array
Dimensions Allowed: (M x N), (M x N x ?), (M x N x ? x ?), ...
As long as the leading dimensions of A (M & N) are nonzero, the
filter will operate on all trailing dimensions.
R : Filter Window Rows (1 < R < M / 2)
C : Filter Window Cols (1 < C < N / 2)

Outputs
-------
B : Output Array with the same dimensions and class as A.

Remarks
-------
rollingMedian uses a median-heap to compute the rolling median rather
than a sorting approach (i.e. sort all elements for each window).
The time complexity of a sorting approach (for e.g. quicksort, mergesort) is
O(M*N*R*C*log(R*C)).
The time complexity of the median heap approach is O(M*N*log(R*C)).

Edge Effects
------------
The left and right edges (1) are filtered first using
successively wider filter windows for all pixels whose col index is less
than C/2. The top and bottom edges (2) are filtered second using
successively taller filter windows for all pixels whose row index is less
than R/2.

Phase Distortion
----------------
The algorithm operates on 4 pointers simultaneously (one for each of the
top-left, bottom-left, top-right, and bottom-right of the array) and
moves from the edges of the array inward. This creates a south-east phase
shift in the top-left quadrant, a north-east phase shift in the
bottom-left quadrant, a south-west phase shift for the top-right quadrant,
and a north-west phase shift in the bottom right quadrant. This may
create distortion at N/2 if C is even, and M/2 if R is even. If M or N is odd,
the median windows from both sides are advanced one row or col and the average
of both sides is used.

Filter Window Passes
--------------------
1a: cols 0 to C/2-1, rows 0 to M/2-1
1b: cols 0 to C/2-1, rows M-1 to M-M/2 (reverse)
1c: cols N-1 to N-C/2 (reverse), rows 0 to M/2-1
1d: cols N-1 to N-C/2 (reverse), rows M-1 to M-M/2 (reverse)
1B: if M%2 : (cols 0 to C/2-1, row M/2) & (col N-1 to N-C/2 (reverse), row M/2)
2a: cols C/2 to N/2-1, rows 0 to R/2-1
2b: cols C/2 to N/2-1, rows M-1 to M-R/2 (reverse)
2c: cols N-C/2-1 to N-N/2 (reverse), rows 0 to R/2-1
2d: cols N-C/2-1 to N-N/2 (reverse), rows M-1 to M-R/2 (reverse)
2B: if N%2 : (col N/2, rows 0 to R/2-1) & (cols N/2, rows M-1 to M-R/2 (reverse))
3a: cols C/2 to N/2-1, rows R/2 to M/2-1
3b: cols C/2 to N/2-1, rows M-R/2-1 to M-M/2 (reverse)
3c: cols N-C/2-1 to N-N/2 (reverse), rows M/2 to M/2-1
3d: cols N-C/2-1 to N-N/2 (reverse), rows M-R/2-1 to M-M/2 (reverse)
3B: if N%2 : (col N/2, row R/2 to M/2-1) & (col N/2, rows M-R/2-1 to M-M/2 (reverse))
3C: if M%2 : (cols C/2 to N/2-1, row M/2) & (cols N-C/2-1 to N-N/2 (reverse), row M/2)
3D: if M%2 & N%2: average of 3B & 3C at (col N/2, row M/2)

Class Support
-------------
uint8, int8, uint16, int16, uint32, int32, uint64, int64, float, double

Peter Cook 2019

Zitieren als

Peter Cook (2024). rollingMedian (https://github.com/peterfranciscook/rollingMedian), GitHub. Abgerufen.

Kompatibilität der MATLAB-Version
Erstellt mit R2016b
Kompatibel mit allen Versionen
Plattform-Kompatibilität
Windows macOS Linux
Kategorien
Mehr zu Programming finden Sie in Help Center und MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versionen, die den GitHub-Standardzweig verwenden, können nicht heruntergeladen werden

Version Veröffentlicht Versionshinweise
1.0.0

Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.
Um Probleme in diesem GitHub Add-On anzuzeigen oder zu melden, besuchen Sie das GitHub Repository.