Clustering by Passing Messages
Keine Lizenz
As recently published in Science (see reference)
Simple and effective means of clustering any data for which a similarity matrix can be constructed. Does not require similarity matrix meet the standards for a metric. The algorithm applies in cases where the similarity matrix is not symmetric (the distance from point i to j can be different from j to i). And it does not require triangular equalities (e.g. the hypoteneus can be less than the sum of the other sides)
usage is very simple (given an m x m similarity matrix)
ex = affprop(s)
returns ex, a m x 1 vector of indices, such that ex(i) is the exemplar for the ith point.
see affyprop_demo for a complete example with simple 2d data. See reference for more complex examples including face matching.
Zitieren als
Michael Boedigheimer (2024). Clustering by Passing Messages (https://www.mathworks.com/matlabcentral/fileexchange/15498-clustering-by-passing-messages), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
- AI and Statistics > Statistics and Machine Learning Toolbox > Cluster Analysis and Anomaly Detection >
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
affinity_propagation/
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.0.0.0 | Improved Demo |