Cody

# Problem 8053. Stress-Strain Properties - 6

Solution 1711681

Submitted on 21 Jan 2019 by William
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
% The following properties are measured at room temperature and are tensile % in a single direction. Some materials, such as metals are generally % isotropic, whereas others, like composite are highly anisotropic % (different properties in different directions). Also, property values can % range depending on the material grade. Finally, thermal or environmental % changes can alter these properties, sometimes drastically.

2   Pass
S_y = 250e6; %Pa S_u = 400e6; %Pa e_y = 0.00125; e_u = 0.35; nu = 0.26; G = 79.3e9; %Pa E = 200e9; %Pa density = 7.85; %g/cm^3 sh_exp = 0.14; %strain-hardening exponent sh_coeff = 463e6; %strain-hardening coefficient ASE_corr = 12.28e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

3   Pass
S_y = 830e6; %Pa S_u = 900e6; %Pa e_y = 0.00728; e_u = 0.14; nu = 0.342; G = 44e9; %Pa E = 114e9; %Pa density = 4.51; %g/cm^3 sh_exp = 0.04; %strain-hardening exponent sh_coeff = 974e6; %strain-hardening coefficient ASE_corr = 12.12e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

4   Pass
S_y = 1172e6; %Pa S_u = 1407e6; %Pa e_y = 0.00563; e_u = 0.027; nu = 0.29; G = 11.6e9; %Pa E = 208e9; %Pa density = 8.19; %g/cm^3 sh_exp = 0.075; %strain-hardening exponent sh_coeff = 1845e6; %strain-hardening coefficient ASE_corr = 3.535e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

5   Pass
S_y = 241e6; %Pa S_u = 300e6; %Pa e_y = 0.0035; e_u = 0.15; nu = 0.33; G = 26e9; %Pa E = 68.9e9; %Pa density = 2.7; %g/cm^3 sh_exp = 0.042; %strain-hardening exponent sh_coeff = 325e6; %strain-hardening coefficient ASE_corr = 4.321e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

6   Pass
S_y = 70e6; %Pa S_u = 220e6; %Pa e_y = 0.00054; e_u = 0.48; nu = 0.34; G = 48e9; %Pa E = 130e9; %Pa density = 8.92; %g/cm^3 sh_exp = 0.44; %strain-hardening exponent sh_coeff = 304e6; %strain-hardening coefficient ASE_corr = 7.342e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

7   Pass
S_y = 317e6; %Pa S_u = 1130e6; %Pa e_y = 0.000685; e_u = 0.24; nu = 0.3; G = 178e9; %Pa E = 463e9; %Pa density = 21.02; %g/cm^3 sh_exp = 0.353; %strain-hardening exponent sh_coeff = 1870e6; %strain-hardening coefficient ASE_corr = 20.06e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

8   Pass
S_y = 82e6; %Pa S_u = 82e6; %Pa e_y = 0.0265; e_u = 0.45; nu = 0.41; G = 2.8e9; %Pa E = 3.1e9; %Pa density = 1.14; %g/cm^3 sh_exp = 0; %strain-hardening exponent sh_coeff = 0; %strain-hardening coefficient ASE_corr = 3.581e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

9   Pass
S_y = 230e6; %Pa S_u = 230e6; %Pa e_y = 0.016; e_u = 0.016; nu = 0.35; G = 13.0e9; %Pa E = 14.5e9; %Pa density = 1.51; %g/cm^3 sh_exp = 0; %strain-hardening exponent sh_coeff = 0; %strain-hardening coefficient ASE_corr = 0.184e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

10   Pass
S_y = 1200e6; %Pa S_u = 1200e6; %Pa e_y = 0.001; e_u = 0.001; nu = 0.20; G = 478e9; %Pa E = 1200e9; %Pa density = 3.51; %g/cm^3 sh_exp = 0; %strain-hardening exponent sh_coeff = 0; %strain-hardening coefficient ASE_corr = 0.06e7; assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

11   Pass
ind = randi(4); switch ind case 1 S_y = 250e6; %Pa e_y = 0.00125; e_u = 0.35; sh_exp = 0.14; %strain-hardening exponent sh_coeff = 463e6; %strain-hardening coefficient ASE_corr = 12.28e7; case 2 S_y = 82e6; %Pa e_y = 0.0265; e_u = 0.45; sh_exp = 0; %strain-hardening exponent sh_coeff = 0; %strain-hardening coefficient ASE_corr = 3.581e7; case 3 S_y = 241e6; %Pa e_y = 0.0035; e_u = 0.15; sh_exp = 0.042; %strain-hardening exponent sh_coeff = 325e6; %strain-hardening coefficient ASE_corr = 4.321e7; case 4 S_y = 317e6; %Pa e_y = 0.000685; e_u = 0.24; sh_exp = 0.353; %strain-hardening exponent sh_coeff = 1870e6; %strain-hardening coefficient ASE_corr = 20.06e7; end assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

12   Pass
ind = randi(4); switch ind case 1 S_y = 830e6; %Pa e_y = 0.00728; e_u = 0.14; sh_exp = 0.04; %strain-hardening exponent sh_coeff = 974e6; %strain-hardening coefficient ASE_corr = 12.12e7; case 2 S_y = 241e6; %Pa e_y = 0.0035; e_u = 0.15; sh_exp = 0.042; %strain-hardening exponent sh_coeff = 325e6; %strain-hardening coefficient ASE_corr = 4.321e7; case 3 S_y = 250e6; %Pa e_y = 0.00125; e_u = 0.35; sh_exp = 0.14; %strain-hardening exponent sh_coeff = 463e6; %strain-hardening coefficient ASE_corr = 12.28e7; case 4 S_y = 70e6; %Pa e_y = 0.00054; e_u = 0.48; sh_exp = 0.44; %strain-hardening exponent sh_coeff = 304e6; %strain-hardening coefficient ASE_corr = 7.342e7; end assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

13   Pass
ind = randi(4); switch ind case 1 S_y = 1200e6; %Pa e_y = 0.001; e_u = 0.001; sh_exp = 0; %strain-hardening exponent sh_coeff = 0; %strain-hardening coefficient ASE_corr = 0.06e7; case 2 S_y = 250e6; %Pa e_y = 0.00125; e_u = 0.35; sh_exp = 0.14; %strain-hardening exponent sh_coeff = 463e6; %strain-hardening coefficient ASE_corr = 12.28e7; case 3 S_y = 230e6; %Pa e_y = 0.016; e_u = 0.016; sh_exp = 0; %strain-hardening exponent sh_coeff = 0; %strain-hardening coefficient ASE_corr = 0.184e7; case 4 S_y = 1172e6; %Pa e_y = 0.00563; e_u = 0.027; sh_exp = 0.075; %strain-hardening exponent sh_coeff = 1845e6; %strain-hardening coefficient ASE_corr = 3.535e7; end assert(abs(stress_strain6(e_u,sh_exp,sh_coeff,S_y,e_y)-ASE_corr)/ASE_corr<1e-2)

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!