Cody

Problem 520. Choose the best fitting dominoes

Solution 189836

Submitted on 11 Jan 2013 by Michael
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
list = {[1 3; 2 4; 5 6],[4 6; 2 5;6 7],[3 4; 6 1; 4 6]} selections = [2 1 2]; assert(isequal(ChooseBestFittingDominoes(list),selections))

list = [3x2 double] [3x2 double] [3x2 double] order = 1 1 1 order = 1 1 1 1 1 2 order = 1 1 1 1 1 2 1 1 3 order = 1 1 1 1 1 2 1 1 3 1 2 1 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 3 1 3 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 3 1 3 3 2 1 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 3 1 3 3 2 1 3 2 2 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 3 1 3 3 2 1 3 2 2 3 2 3 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 3 1 3 3 2 1 3 2 2 3 2 3 3 3 1 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 3 1 3 3 2 1 3 2 2 3 2 3 3 3 1 3 3 2 order = 1 1 1 1 1 2 1 1 3 1 2 1 1 2 2 1 2 3 1 3 1 1 3 2 1 3 3 2 1 1 2 1 2 2 1 3 2 2 1 2 2 2 2 2 3 2 3 1 2 3 2 2 3 3 3 1 1 3 1 2 3 1 3 3 2 1 3 2 2 3 2 3 3 3 1 3 3 2 3 3 3 ans = 2 1 2

2   Pass
%% list = {[1 5; 2 3; 2 2; 3 4; 0 3], [0 4; 1 5; 2 2; 4 5; 4 6], [7 7; 3 8; 4 7; 5 9; 0 4]}; selections = [4 4 4]; assert(isequal(ChooseBestFittingDominoes(list),selections))

order = 1 1 1 order = 1 1 1 1 1 2 order = 1 1 1 1 1 2 1 1 3 order = 1 1 1 1 1 2 1 1 3 1 1 4 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 1 5 4 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 2 1 1 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 2 1 1 2 1 2 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 2 1 1 2 1 2 2 1 3 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 2 1 1 2 1 2 2 1 3 2 1 4 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 2 1 1 2 1 2 2 1 3 2 1 4 2 1 5 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 2 1 1 2 1 2 2 1 3 2 1 4 2 1 5 2 2 1 order = 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 4 1 1 4 ...

3   Pass
%% list = {[1 4; 2 2; 1 1; 3 3],[1 2; 2 3],[2 2]}; selections = [3 1 1]; assert(isequal(ChooseBestFittingDominoes(list),selections))

order = 1 1 1 order = 1 1 1 1 2 1 order = 1 1 1 1 2 1 2 1 1 order = 1 1 1 1 2 1 2 1 1 2 2 1 order = 1 1 1 1 2 1 2 1 1 2 2 1 3 1 1 order = 1 1 1 1 2 1 2 1 1 2 2 1 3 1 1 3 2 1 order = 1 1 1 1 2 1 2 1 1 2 2 1 3 1 1 3 2 1 4 1 1 order = 1 1 1 1 2 1 2 1 1 2 2 1 3 1 1 3 2 1 4 1 1 4 2 1 ans = 3 1 1

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!