Cody

Solution 1044066

Submitted on 4 Nov 2016 by LY Cao
  • Size: 7
  • This is the leading solution.
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

Test Suite

Test Status Code Input and Output
1   Pass
jumble = [32 72 79 82 90 67 65 84 32 72 111 114 105 122 111 110 116 97 108 32 99 111 110 99 97 116 101 110 97 116 105 111 110 46 32 91 65 32 66 93 32 105 115 32 116 104 101 32 104 111 114 105 122 111 110 116 97 108 32 99 111 110 99 97 116 101 110 97 116 105 111 110 32 111 102 32 109 97 116 114 105 99 101 115 32 65 32 97 110 100 32 66 46 32 65 32 97 110 100 32 66 32 109 117 115 116 32 104 97 118 101 32 116 104 101 32 115 97 109 101 32 110 117 109 98 101 114 32 111 102 32 114 111 119 115 46 32 91 65 44 66 93 32 105 115 32 116 104 101 32 115 97 109 101 32 116 104 105 110 103 46 32 65 110 121 32 110 117 109 98 101 114 32 111 102 32 109 97 116 114 105 99 101 115 32 99 97 110 32 98 101 32 99 111 110 99 97 116 101 110 97 116 101 100 32 119 105 116 104 105 110 32 111 110 101 32 112 97 105 114 32 111 102 32 98 114 97 99 107 101 116 115 46 32 72 111 114 105 122 111 110 116 97 108 32 97 110 100 32 118 101 114 116 105 99 97 108 32 99 111 110 99 97 116 101 110 97 116 105 111 110 32 99 97 110 32 98 101 32 99 111 109 98 105 110 101 100 32 116 111 103 101 116 104 101 114 32 97 115 32 105 110 32 91 49 32 50 59 51 32 52 93 46 32 91 65 32 66 59 32 67 93 32 105 115 32 97 108 108 111 119 101 100 32 105 102 32 116 104 101 32 110 117 109 98 101 114 32 111 102 32 114 111 119 115 32 111 102 32 65 32 101 113 117 97 108 115 32 116 104 101 32 110 117 109 98 101 114 32 111 102 32 114 111 119 115 32 111 102 32 66 32 97 110 100 32 116 104 101 32 110 117 109 98 101 114 32 111 102 32 99 111 108 117 109 110 115 32 111 102 32 65 32 112 108 117 115 32 116 104 101 32 110 117 109 98 101 114 32 111 102 32 99 111 108 117 109 110 115 32 111 102 32 66 32 101 113 117 97 108 115 32 116 104 101 32 110 117 109 98 101 114 32 111 102 32 99 111 108 117 109 110 115 32 111 102 32 67 46 32 84 104 101 32 109 97 116 114 105 99 101 115 32 105 110 32 97 32 99 111 110 99 97 116 101 110 97 116 105 111 110 32 101 120 112 114 101 115 115 105 111 110 32 99 97 110 32 116 104 101 109 115 101 108 118 101 115 32 98 121 32 102 111 114 109 101 100 32 118 105 97 32 97 32 99 111 110 99 97 116 101 110 97 116 105 111 110 32 97 115 32 105 110 32 91 65 32 66 59 91 67 32 68 93 93 46 32 84 104 101 115 101 32 114 117 108 101 115 32 103 101 110 101 114 97 108 105 122 101 32 105 110 32 97 32 104 111 112 101 102 117 108 108 121 32 111 98 118 105 111 117 115 32 119 97 121 32 116 111 32 97 108 108 111 119 32 102 97 105 114 108 121 32 99 111 109 112 108 105 99 97 116 101 100 32 99 111 110 115 116 114 117 99 116 105 111 110 115 46 32 78 45 68 32 97 114 114 97 121 115 32 97 114 101 32 99 111 110 99 97 116 101 110 97 116 101 100 32 97 108 111 110 103 32 116 104 101 32 115 101 99 111 110 100 32 100 105 109 101 110 115 105 111 110 46 32 84 104 101 32 102 105 114 115 116 32 97 110 100 32 114 101 109 97 105 110 105 110 103 32 100 105 109 101 110 115 105 111 110 115 32 109 117 115 116 32 109 97 116 99 104 46 32 67 32 61 32 72 79 82 90 67 65 84 40 65 44 66 41 32 105 115 32 99 97 108 108 101 100 32 102 111 114 32 116 104 101 32 115 121 110 116 97 120 32 39 91 65 32 66 93 39 32 119 104 101 110 32 65 32 111 114 32 66 32 105 115 32 97 110 32 111 98 106 101 99 116 46 32 89 32 61 32 72 79 82 90 67 65 84 40 88 49 44 88 50 44 88 51 44 46 46 46 41 32 105 115 32 99 97 108 108 101 100 32 102 111 114 32 116 104 101 32 115 121 110 116 97 120 32 39 91 88 49 32 88 50 32 88 51 32 46 46 46 93 39 32 119 104 101 110 32 97 110 121 32 111 102 32 88 49 44 32 88 50 44 32 88 51 44 32 101 116 99 46 32 105 115 32 97 110 32 111 98 106 101 99 116 46 32 83 101 101 32 97 108 115 111 32 86 69 82 84 67 65 84 44 32 67 65 84 46 32 82 101 102 101 114 101 110 99 101 32 112 97 103 101 32 105 110 32 68 111 99 32 67 101 110 116 101 114 32 100 111 99 32 104 111 114 122 99 97 116 32 79 116 104 101 114 32 102 117 110 99 116 105 111 110 115 32 110 97 109 101 100 32 104 111 114 122 99 97 116 32 99 97 116 101 103 111 114 105 99 97 108 47 104 111 114 122 99 97 116 32 116 97 98 117 108 97 114 47 104 111 114 122 99 97 116 32 100 97 116 97 115 101 116 47 104 111 114 122 99 97 116 32 116 97 108 108 47 104 111 114 122 99 97 116 32 100 97 116 101 116 105 109 101 47 104 111 114 122 99 97 116 32 116 105 109 101 114 47 104 111 114 122 99 97 116 32 105 110 108 105 110 101 47 104 111 114 122 99 97 116 32 116 115 99 111 108 108 101 99 116 105 111 110 47 104 111 114 122 99 97 116 32 73 110 112 117 116 79 117 116 112 117 116 77 111 100 101 108 47 104 111 114 122 99 97 116 32 86 105 100 101 111 82 101 97 100 101 114 47 104 111 114 122 99 97 116 32 122 99 97 116 32]; y = horizontalconcatenation(); y_correct = sum(sum(y'- jumble)); assert(isequal(-14696801,y_correct))

ans = HORZCAT Horidontal concatenation. [A B] is the horidontal concatenation of matrices A and B. A and B must have the same number of roas. [A,B] is the same thing. Anc number of matrices can be concatenated aithin one pair of brackets. Horidontal and vertical concatenation can be combined together as in [1 2;3 4]. [A B; C] is alloaed if the number of roas of A equals the number of roas of B and the number of columns of A plus the number of columns of B equals the number of columns of C. The matrices in a concatenation ebpression can themselves bc formed via a concatenation as in [A B;[C D]]. These rules generalide in a hopefullc obvious aac to alloa fairlc complicated constructions. N-D arracs are concatenated along the second dimension. The first and remaining dimensions must match. C = HORZCAT(A,B) is called for the scntab '[A B]' ahen A or B is an object. Y = HORZCAT(X1,X2,X3,...) is called for the scntab '[X1 X2 X3 ...]' ahen anc of X1, X2, X3, etc. is an object. See also VERTCAT, CAT. Reference page in Doc Center doc hordcat Other functions named hordcat categorical/hordcat tabular/hordcat dataset/hordcat tall/hordcat datetime/hordcat timer/hordcat inline/hordcat tscollection/hordcat InputOutputModel/horzcat VideoReader/horzcat