Cody

# Problem 43. Subset Sum

Solution 1850616

Submitted on 17 Jun 2019 by Debasish Samal
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
v = [2, 3, 5]; n = 8; correct = [2, 3]; actual = subset_sum(v, n); assert(isequal(actual, correct))

C = 2 3 5 A = 2 3 5 F = 0×1 empty double column vector C = 2 3 2 5 3 5 A = 5 7 8 F = 3 idx = 0 1 2 ind = 2 3

2   Pass
v = [5, 3, 2]; n = 2; correct = 3; actual = subset_sum(v, n); assert(isequal(actual, correct))

C = 5 3 2 A = 5 3 2 F = 3 idx = 0 0 1 ind = 3

3   Pass
v = [2, 3, 5]; n = 4; correct = []; actual = subset_sum(v, n); assert(isequal(actual, correct))

C = 2 3 5 A = 2 3 5 F = 0×1 empty double column vector C = 2 3 2 5 3 5 A = 5 7 8 F = 0×1 empty double column vector C = 2 3 5 A = 10 F = []

4   Pass
v = [1, 1, 1, 1, 1]; n = 5; correct = [1, 2, 3, 4, 5]; actual = subset_sum(v, n); assert(isequal(actual, correct))

C = 1 1 1 1 1 A = 1 1 1 1 1 F = 0×1 empty double column vector C = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A = 2 2 2 2 2 2 2 2 2 2 F = 0×1 empty double column vector C = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A = 3 3 3 3 3 3 3 3 3 3 F = 0×1 empty double column vector C = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A = 4 4 4 4 4 F = 0×1 empty double column vector C = 1 1 1 1 1 A = 5 F = 1 idx = 1 1 1 1 1 ind = 1 2 3 4 5

5   Pass
v = [1, 2, 3, 4, 100]; n = 100; correct = 5; actual = subset_sum(v, n); assert(isequal(actual, correct))

C = 1 2 3 4 100 A = 1 2 3 4 100 F = 5 idx = 0 0 0 0 1 ind = 5

6   Pass
v = [-7, -3, -2, 8, 5]; n = 0; correct = [2, 3, 5]; actual = subset_sum(v, n); assert(isequal(actual, correct))

C = -7 -3 -2 8 5 A = -7 -3 -2 8 5 F = 0×1 empty double column vector C = -7 -3 -7 -2 -7 8 -7 5 -3 -2 -3 8 -3 5 -2 8 -2 5 8 5 A = -10 -9 1 -2 -5 5 2 6 3 13 F = 0×1 empty double column vector C = -7 -3 -2 -7 -3 8 -7 -3 5 -7 -2 8 -7 -2 5 -7 8 5 -3 -2 8 -3 -2 5 -3 8 5 -2 8 5 A = -12 -2 -5 -1 -4 6 3 0 10 11 F = 8 idx = 0 1 2 0 3 ind = 2 3 5