MATLAB Answers

How to do integration of this equation and plot graph between T and y

3 views (last 30 days)
Here
variables are t' and n only
u=0.020;
x=0.025;
y=(0:0.0001:0.010); we have to vary y
z=0;
t=5;
neta= 0.6;
P=200;
C=500;
l=0.008;
Alpha=17e-6;
ro= 1000;
r=sqrt((x-(u*(5-t)))^2+y^2);

Accepted Answer

Alan Stevens
Alan Stevens on 3 Jul 2021
Like this perhaps:
u=0.020;
x=0.025;
z=0;
t=5;
eta= 0.6;
P=200;
C=500;
ro= 1000;
l=0.008;
Alpha=17e-6;
r = 0.01; % Guessed value as you haven't specified r
k = eta*P/(pi*ro*C*l);
y= (0:0.001:0.010);
DT = zeros(1,numel(y));
for i = 1:numel(y)
f1 = @(tp) (4*Alpha*(t-tp)+r^2).^-1;
f2 = @(tp) exp(-((x - u*(t-tp)).^2+y(i).^2).*f1(tp));
DeltaTfn = @(tp) f1(tp).*f2(tp).*(1 + 2*f3(tp)); % You set z to zero, so the cosine term is jusr 1
DT(i) = k*integral(DeltaTfn,0,t);
end
plot(y,DT),grid
xlabel('y'), ylabel('\Delta T')
disp(DT(numel(y)))
40.3366
function s = f3(tp)
t = 5;
Alpha=17e-6;
l=0.008;
s = 0;
nmax = 10; % Adjust this until you get convergence
for n=1:nmax
s=exp(-Alpha*n^2*pi^2*(t-tp)/l^2) + s;
end
end
  4 Comments
Alan Stevens
Alan Stevens on 7 Jul 2021
Like this:
u=0.020;
x=0.025;
z=0:0.0002:0.002;
t=5;
eta= 0.6;
P=200;
C=500;
ro= 1000;
l=0.008;
Alpha=17e-6;
r = 0.01; % Guessed value as you haven't specified r
k = eta*P/(pi*ro*C*l);
y= 0.005; %(0:0.001:0.010); Arbitrary constant - use your own value
DT = zeros(1,numel(z));
for i = 1:numel(z) %%%%%%%%%% y goes to z
f1 = @(tp) (4*Alpha*(t-tp)+r^2).^-1;
f2 = @(tp) exp(-((x - u*(t-tp)).^2+y.^2).*f1(tp)); %%%%%%% take the (i) off y
DeltaTfn = @(tp) f1(tp).*f2(tp).*(1 + 2*f3(tp,z(i))); % pass z(i) to function f3
DT(i) = k*integral(DeltaTfn,0,t);
end
plot(z,DT),grid
xlabel('z'), ylabel('\Delta T')
disp(DT(numel(z)))
58.9313
function s = f3(tp,z) %%%%%%%
t = 5;
Alpha=17e-6;
l=0.008;
s = 0;
nmax = 10; % Adjust this until you get convergence
for n=1:nmax
s=exp(-Alpha*n^2*pi^2*(t-tp)/l^2)*cos(n*pi*z/l) + s; %%%%%%%
end
end

Sign in to comment.

More Answers (1)

Aayush Meena
Aayush Meena on 8 Jul 2021
What if we vary x(x=0:0.0001:0.050) and take y and z as constants.
Thanks
  1 Comment
Alan Stevens
Alan Stevens on 8 Jul 2021
Like so:
u=0.020;
x=0:0.0001:0.050; %%%%%%%%%%%%%
z=0.002; %%%%%%%%%%%%%
t=5;
eta= 0.6;
P=200;
C=500;
ro= 1000;
l=0.008;
Alpha=17e-6;
r = 0.01; % Guessed value as you haven't specified r
k = eta*P/(pi*ro*C*l);
y= 0.005; %(0:0.001:0.010); Arbitrary constant - use your own value
DT = zeros(1,numel(x));
for i = 1:numel(x) %%%%%%%%%% y goes to z
f1 = @(tp) (4*Alpha*(t-tp)+r^2).^-1;
f2 = @(tp) exp(-((x(i) - u*(t-tp)).^2+y.^2).*f1(tp));
DeltaTfn = @(tp) f1(tp).*f2(tp).*(1 + 2*f3(tp,z)); % pass z to function f3
DT(i) = k*integral(DeltaTfn,0,t);
end
plot(x,DT),grid
xlabel('x'), ylabel('\Delta T')
disp(DT(numel(x)))
46.9846
function s = f3(tp,z) %%%%%%%
t = 5;
Alpha=17e-6;
l=0.008;
s = 0;
nmax = 10; % Adjust this until you get convergence
for n=1:nmax
s=exp(-Alpha*n^2*pi^2*(t-tp)/l^2)*cos(n*pi*z/l) + s; %%%%%%%
end
end
That's pretty much every combination of x, y and z dealt with now!

Sign in to comment.

Products


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by