Filter löschen
Filter löschen

i have a problem with modelGradients

6 Ansichten (letzte 30 Tage)
Hind Haboubi
Hind Haboubi am 4 Mai 2021
Kommentiert: debojit sharma am 16 Jun. 2023
When i run thus section :
for numEpoch = 1:nEpochs
reset(preprocessedTrainingData);% Reset datastore.
iteration = 0;
while hasdata(preprocessedTrainingData)
t_start = tic;
% Custom training loop.
% Read batch of data and create batch of images and
% ground truths.
outDataTable = read(preprocessedTrainingData);
XTrain = outDataTable{1,1}{1};
YTrain = outDataTable{1,2}{1};
if isempty(YTrain)
continue;
end
% Convert mini-batch of data to dlarray.
XTrain = dlarray(single(XTrain),'SSCB');
% Evaluate the model gradients and loss using dlfeval and the
% modelGradients function.
[gradients,boxLoss,objLoss,clsLoss,totalLoss,state] = dlfeval(@modelGradients, model, XTrain, YTrain,yoloLayerNumber);
I get this error :
'modelGradients' is used in Generate Synthetic Signals Using Conditional Generative Adversarial Network.
Error in deep.internal.dlfeval (line 18)
[varargout{1:nout}] = fun(x{:});
Error in dlfeval (line 41)
[varargout{1:nout}] = deep.internal.dlfeval(fun,varargin{:});
Error in nouveux (line 94)
[gradients,boxLoss,objLoss,clsLoss,totalLoss,state] = dlfeval(@modelGradients, model, XTrain,
YTrain,yoloLayerNumber);

Akzeptierte Antwort

Arianna Pryor
Arianna Pryor am 12 Mai 2021
I got a similar error when trying to run the VAE example. I had to use another modelGradients function.
function [infGrad, genGrad] = modelGradients(encoderNet, decoderNet, x)
[z, zMean, zLogvar] = sampling(encoderNet, x);
xPred = sigmoid(forward(decoderNet, z));
loss = ELBOloss(x, xPred, zMean, zLogvar);
[genGrad, infGrad] = dlgradient(loss, decoderNet.Learnables, ...
encoderNet.Learnables);
end
  1 Kommentar
debojit sharma
debojit sharma am 16 Jun. 2023
I am also facing the same problem while trying to train VAE for RGB image. @Arianna Pryor Can you please kindly tell me in which part of the code have you used this modelGradients function?

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Mohamed Marei
Mohamed Marei am 26 Jul. 2021
Bearbeitet: Mohamed Marei am 26 Jul. 2021
Because MATLAB sees both of these functions which share the same name on the path, it doesn't know which one to use for each example. Therefore, it may be better practice to copy the internals of this function into a different function (more appropriate for your example), i.e.
function [gradients, boxLoss, objLoss, clsLoss, totalLoss, state] = ...
yoloModelGradients(network, Xtrain, Ytrain, yoloLayerNumber)
% loss, gradients, and states definitions go here.
end
After that, replace the call to the old modelGradients function in your call to dlfeval:
% Evaluate the model gradients and loss using dlfeval and the
% yoloModelGradients function.
[gradients,boxLoss,objLoss,clsLoss,totalLoss,state] = dlfeval(@yoloModelGradients, model, XTrain, YTrain,yoloLayerNumber);
Hope you've managed to get it fixed since then!

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by