How to solve a system of second order nonlinear differential equations

20 Ansichten (letzte 30 Tage)
Hello, I am having troubles solving a system of second order nonlinear equations in MATALB
Here is the equations:
1.01 * (x'') + 0.025 * (θ'') * cos(θ) - 0.025 * (θ')^2 * sin(θ) + 200 * x^3 + 20 * (x') = 0
(x'') * cos(θ) + 2.5 * (θ'') + 9.8 * sin(θ) = 0
  1 Kommentar
Lewis Fer
Lewis Fer am 10 Jun. 2021
Verschoben: Dyuman Joshi am 4 Apr. 2024
Hello, I am having troubles solving a system of second order nonlinear equations with boundary conditions using MATALB
Here is the equations:
f''(t)=3*f(t)*g(t) -g(t)+5*t;
g''(t)=-4f(t)*g(t)+f(t)-7*t;
the boundary conditions are: f'(0)=0 et h'(o)=5;
g(0)=3 et h'(2)=h(2)

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Ameer Hamza
Ameer Hamza am 18 Nov. 2020
Bearbeitet: Ameer Hamza am 18 Nov. 2020
If you have the symbolic toolbox, It will make things easier as shown in following code
syms x(t) theta(t)
d1x = diff(x,1);
d2x = diff(x,2);
d1theta = diff(theta,1);
d2theta = diff(theta,2);
eq1 = 1.01*d2x + 0.025*d2theta*cos(theta) - 0.025*d1theta^2*sin(theta) + 200*x^3 + 20*d1x == 0;
eq2 = d2x*cos(theta) + 2.5*d2theta + 9.8 * sin(theta) == 0;
[F, S] = odeToVectorField(eq1, eq2);
odeFun = matlabFunction(F, 'Vars', {t, 'Y'});
[t, y] = ode45(odeFun, [0 10], [1; 0; 0.1; 0]);
plot(t, y);
legend({'$\theta$', '$\dot{\theta}$', '$x$', '$\dot{x}$'}, ...
'FontSize', 16, ...
'Interpreter', 'latex', ...
'Location', 'best');

Weitere Antworten (0)

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by