Finite potential well transcendental graph
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
I am trying to find the energies solution to the transcendental equation by plotting both graphs and finding their points of intersection. I don't why but my graphs are very weirdly shaped and don't follow the expected solution that is shown in textbooks. The tan graph itself is coming out to be a weird shape.
My train of though was to just vary E, plug that numbers in the equations and then plot the solutions against E (in eV).
The code is pasted below:
%%%%%%%%%%%%%%%%%%%%%
clear all;
e=1.6*10^-19; % eV to Joules
V=20*e;
L=6e-10;
m=9.11e-31;
h=(6.63e-34)/(2*pi);
a=(sqrt(2*m)*L)/(2*h);
E=[0:0.0001*e:V];
for i=1:length(E)
y1(i)=sqrt(E(i))*tan(a*E(i)^0.5);
y2(i)=(V-E(i))^0.5;
end
%Back to eV
E=E/e;
y3=y1/e;
y4=y2/e;
plot(E,y4)
xlim([0 20]); grid on;
%%%%%%%%%%%%%%%%%%%%%
Any help will be greatly appreciated.
3 Kommentare
Taharat
am 4 Dez. 2022
Hi,
Could you please let me know what would happen if an static electric field of 10V/um is applied on to this well?
How the energies are to be calculated?
Thanks
Antworten (1)
Ashish Kumar
am 10 Feb. 2022
Bearbeitet: Ashish Kumar
am 12 Feb. 2022
clear all;
e=1.6*10^-19; % eV to Joules
V=10*e;
L=1.8*10^(-9)/2;
m=9.11e-31;
h_bar=(6.63e-34)/(2*pi);
a=(sqrt(2*m)*L)/(h_bar);
E=[0:0.01*e:V];
for i=1:length(E)
alpha_by_k(i)=sqrt((V-E(i))/E(i));
y1(i)=tan(a*sqrt(E(i)));
y2(i)=-cot(a*sqrt(E(i)));
end
%Back to eV
E=E/e;
y3=y1;
y4=y2;
alphaK=alpha_by_k;
%plot(E,y4)
figure('Name','V=10eV');
plot(E,alphaK,E,y3,E,y4);
%plot(E,y3);
xlim([0 10.2]);
ylim([-10 10]);
legend('alpha/k','tan','-cot');
This might help others.
2 Kommentare
David Goodmanson
am 12 Feb. 2022
Bearbeitet: David Goodmanson
am 12 Feb. 2022
Hi Ashish,
If you are going for posterity I think it could be made clearer that e has the value 1 eV. Also it might help if you pointed out that E and V are negative, meaning that what you denote as E and V are actually abs(E) and abs(V); that what you denote by h is usually denoted by hbar; and that L is the half width of the well, not the full width.
As verification, if V is in eV and L is in angstroms (both V and L considered to be dimensionless numbers at this point), then the expected number of bound states is approximately
n = sqrt(V)*L/pi
(except there is always at least one bound state) which in this case gives n= 18, close to what the plot shows.
Siehe auch
Kategorien
Mehr zu Graph and Network Algorithms finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
