How to calculate Jacobian matrix through numerical analysis.

10 Ansichten (letzte 30 Tage)
Deukwon Ko
Deukwon Ko am 22 Jul. 2020
Hello. I would like to obtain the Jacobian matrix of the aircraft and implement the extended Kalman filter. I want to estimate the state variable after n seconds through the Extended Kalman Filter. I implemented the following formula.
xdot is , d_xdot is , delta is.
function [J,fdx,fx,dx,deltafx] = Jacobian(xdot,d_xdot,delta)
fdx=zeros(9,1);
fx=zeros(9,1);
dx=zeros(9,1);
J=zeros(9);
deltafx=zeros(9);
fdx(1) = d_xdot(1);
fdx(2) = d_xdot(14);
fdx(3) = d_xdot(27);
fdx(4) = d_xdot(40);
fdx(5) = d_xdot(53);
fdx(6) = d_xdot(66);
fdx(7) = d_xdot(82);
fdx(8) = d_xdot(95);
fdx(9) = d_xdot(108);
fx(1)=xdot(1);
fx(2)=xdot(2);
fx(3)=xdot(3);
fx(4)=xdot(4);
fx(5)=xdot(5);
fx(6)=xdot(6);
fx(7)=xdot(10);
fx(8)=xdot(11);
fx(9)=xdot(12);
dx(1)=delta(1);
dx(2)=delta(2);
dx(3)=delta(3);
dx(4)=delta(4);
dx(5)=delta(5);
dx(6)=delta(6);
dx(7)=delta(10);
dx(8)=delta(11);
dx(9)=delta(12);
for i=1:9
for j=1:9
J(i,j)=(fdx(i)-fx(i))/dx(j);
end
end
end
'd_xdot' is calculated as follows.
I would like to ask for advice if this is correct.

Antworten (0)

Kategorien

Mehr zu Simulink finden Sie in Help Center und File Exchange

Produkte


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by