Heat Dissipation from an Annular Fin

10 Ansichten (letzte 30 Tage)
Jonathan Bird
Jonathan Bird am 5 Mai 2020
Beantwortet: Ayush Gupta am 10 Jun. 2020
I'm trying to find the rate of heat dissipation from an annular fin as a function of the fin radius. The rate of heat dissipation is found as follows:
q = (2*pi*k*n*w*theta_0*Rb)*((besselk(1,n*Rb)*besseli(1,n*Re)-besseli(1,n*Rb)*besselk(1,n*Re))/(besselk(0,n*Rb)*besseli(1,n*Re)+besseli(0,n*Rb)*besselk(1,n*Re)));
Where Rb and Re are the inner and outer radii respectively. k, n, w, theta_0 and Rb are all known values. How could I work out the rate of heat dissipation as a function of the outer radius Re for say Re = Rb to Re = 100*Rb and plot this?
Many thanks

Antworten (1)

Ayush Gupta
Ayush Gupta am 10 Jun. 2020
This equation can be simplified by fixing the known values and the relation between Re and Rb, Refer to the code below:
x = [0:0.5:20];
result = [0:0.5:20];
for i = 1:length(x)
result(i) = cali(x(i));
end
plot(x,result)
function out = cali(Rb)
k = 1;
n= 1;
k = 1;
w = 1;
thefixedta_0 = 1;
Re = 100*Rb;
out = (2*pi*k*n*w*thefixedta_0*Rb)*((besselk(1,n*Rb)*besseli(1,n*Re)-besseli(1,n*Rb)*besselk(1,n*Re))/(besselk(0,n*Rb)*besseli(1,n*Re)+besseli(0,n*Rb)*besselk(1,n*Re)));
end

Kategorien

Mehr zu Bessel functions finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by