how to solve 1D heat equation by Crank-Nicolson method

157 Ansichten (letzte 30 Tage)
Jiali
Jiali am 18 Feb. 2020
Kommentiert: Torsten am 1 Jan. 2022
I need to solve a 1D heat equation by Crank-Nicolson method . The tempeture on both ends of the interval is given as the fixed value u(0,t)=2, u(L,t)=0.5. I solve the equation through the below code, but the result is wrong. Attached figures are the correct result. I don't know why? Could you please anyone offer me a hand? Thanks a lot.
clear all;
L=1;
dx=0.1;
imax=L/dx+1;
X=linspace(0,L,imax);
% inital value
f0 = 2-1.5.*X+sin(pi.*X);
dt=0.05;
nstep=15;
D=1.44;
alpha=D*dt/(dx)^2;
e = ones(imax,1);
B = [-alpha*e 2*(1+alpha)*e -alpha*e];
Lx = spdiags(B,[-1 0 1],imax,imax);
B = [alpha*e 2*(1-alpha)*e alpha*e];
Rx = spdiags(B,[-1 0 1],imax,imax);
%%CN method:
u=zeros(imax,nstep+1);
u(:,1)=(f0)';
for n=2:nstep+1
u(:,n)=Lx\(Rx*u(:,n-1));
% boundary value
u(1,n)=2;
u(end,n)=0.5;
end
% display contour plot
t=[0:nstep];
[Xg,tg] = meshgrid(X,t);
figure;
contourf(Xg,tg,u.');
  4 Kommentare
reyhdh saleh
reyhdh saleh am 1 Jan. 2022
%This program is meant to test out the Crank-Nicolson scheme using a simple
%nonlinear diffusion scheme.
n=5000;m=30;
t=linspace(0,20,n);% set time and distance scales
x=linspace(0,1,m);
dx=x(2)-x(1);dt=t(2)-t(1); %Increments
s=dt/(2*dx^2);%Useful for the solution.
u=zeros(n,m); %set up solution matrix
p=s*ones(1,m-1); q=-(1+2*s)*ones(1,m);
Z=diag(p,1)+diag(p,-1)+diag(q);
A=Z(2:m-1,2:m-1);
%Add in intial condition:
u(1,:)=exp(-5*(x-0.5).^2);
v=zeros(m-2,1);
%Solve the system
for i=2:n-1
%Construct the RHS for the solution
for j=2:m-1
v(j-1)=s*u(i-1,j+1)-(2*s+1)*u(i-1,j)-s*u(i-1,j-1);
end
%Solve for the new time step
w=A\v;
u(i,2:m-1)=w;
u(i,1)=u(i,2);
u(i,end)=u(i,end-1);
end
I have problem ....
Undefined function or variable 'Crank'
what does it mean
Torsten
Torsten am 1 Jan. 2022
We don't know since the string "Crank" (most probably for Crank-Nicholson) does not appear in the code you posted.
You can run the code from above just as it is as a script in MATLAB.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Jiali
Jiali am 20 Feb. 2020
I figure out that the boundary is dealt with incorrectly. After re-deriving the matrix to include the boundary value, I finally get the correct result.

Weitere Antworten (1)

Jiali
Jiali am 16 Mär. 2020
Dear Darova,
The below code is What I figure out. Hopefully it helps someone.
u=zeros(length(X),nstep+1);
u(:,1)=(f0)';
% boundary value
u(1,:)=2;
u(end,:)=0.5;
imax=length(X)-2; % remove boundary point
e = ones(imax,1);
A = [-alpha*e 2*(1+alpha)*e -alpha*e];
Lx = spdiags(A,[-1 0 1],imax,imax);
B = [alpha*e 2*(1-alpha)*e alpha*e];
Rx = spdiags(B,[-1 0 1],imax,imax);
%% CN method:
for n=2:nstep+1
% adjust the right matrix based on the fixed value on boundary
temp=zeros(imax,1);
temp(1)=alpha*2*u(1,n);
temp(end)=alpha*2*u(end,n);
u(2:end-1,n)=Lx\(Rx*u(2:end-1,n-1)+temp);
end

Kategorien

Mehr zu Programming finden Sie in Help Center und File Exchange

Produkte


Version

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by