Why are there Topic Concentration Iterations when you disable fitting topic concentration in fitlda?

1 Ansicht (letzte 30 Tage)
When I run fitlda with 'FitTopicConcentration' set to false, I still get `Topic Concentration Interatons'.
For example:
mdl = fitlda(bag,numTopics,'Verbose',1,'InitialTopicConcentration',50,'FitTopicConcentration',false,'LogLikelihoodTolerance',0,'IterationLimit',20);
gets:
Initial topic assignments sampled in 1.44622 seconds.
=====================================================================
| Iteration | Time per | Relative | Training | Topic |
| | iteration | change in | perplexity | concentration |
| | (seconds) | log(L) | | iterations |
=====================================================================
| 0 | 0.90 | | 6.715e+02 | 0 |
| 1 | 1.79 | 3.3759e-02 | 5.429e+02 | 0 |
| 2 | 1.70 | 1.2228e-02 | 5.031e+02 | 0 |
| 3 | 1.58 | 2.1513e-03 | 4.965e+02 | 0 |
| 4 | 1.57 | 6.2666e-04 | 4.945e+02 | 0 |
| 5 | 1.55 | 3.3881e-04 | 4.935e+02 | 0 |
| 6 | 1.60 | 2.5182e-04 | 4.927e+02 | 0 |
| 7 | 1.55 | 1.5109e-04 | 4.923e+02 | 0 |
| 8 | 1.62 | 2.2085e-04 | 4.916e+02 | 0 |
| 9 | 1.64 | 2.1745e-04 | 4.909e+02 | 0 |
| 10 | 1.66 | 1.0178e-04 | 4.906e+02 | 0 |
| 11 | 1.86 | 1.1432e-04 | 4.903e+02 | 4 |
| 12 | 1.79 | 6.5833e-04 | 4.883e+02 | 3 |
| 13 | 1.77 | 4.3774e-04 | 4.870e+02 | 3 |
| 14 | 1.70 | 4.8030e-04 | 4.855e+02 | 3 |
| 15 | 1.73 | 4.1302e-04 | 4.843e+02 | 3 |
| 16 | 1.69 | 1.9747e-04 | 4.837e+02 | 3 |
| 17 | 1.73 | 2.5513e-04 | 4.829e+02 | 3 |
| 18 | 1.83 | 2.4952e-04 | 4.822e+02 | 3 |
| 19 | 1.63 | 9.3627e-05 | 4.819e+02 | 2 |
| 20 | 1.66 | 1.0886e-04 | 4.816e+02 | 2 |
=====================================================================
Why is the rightmost column not all zeros? What does "topic concentration iterations" mean?
  1 Kommentar
Stephen Bruestle
Stephen Bruestle am 17 Jan. 2019
Note, when I run:
mdl = fitlda(bag,numTopics,'Verbose',1,'InitialTopicConcentration',50,'FitTopicConcentration',true,'LogLikelihoodTolerance',0,'IterationLimit',20);
I get:
Initial topic assignments sampled in 1.31452 seconds.
=====================================================================================
| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
| | (seconds) | log(L) | | | iterations |
=====================================================================================
| 0 | 0.59 | | 6.715e+02 | 50.000 | 0 |
| 1 | 1.59 | 3.2014e-02 | 5.487e+02 | 50.000 | 0 |
| 2 | 1.57 | 1.1809e-02 | 5.098e+02 | 50.000 | 0 |
| 3 | 1.57 | 2.9063e-03 | 5.006e+02 | 50.000 | 0 |
| 4 | 1.68 | 7.4965e-04 | 4.983e+02 | 50.000 | 0 |
| 5 | 1.55 | 4.2984e-04 | 4.970e+02 | 50.000 | 0 |
| 6 | 1.61 | 2.2000e-04 | 4.963e+02 | 50.000 | 0 |
| 7 | 1.57 | 1.3672e-04 | 4.959e+02 | 50.000 | 0 |
| 8 | 1.55 | 3.0094e-04 | 4.950e+02 | 50.000 | 0 |
| 9 | 1.47 | 1.7135e-04 | 4.944e+02 | 50.000 | 0 |
| 10 | 1.53 | 1.9109e-04 | 4.939e+02 | 50.000 | 0 |
| 11 | 3.51 | 5.6307e-05 | 4.937e+02 | 8.503 | 47 |
| 12 | 2.40 | 4.8823e-02 | 3.699e+02 | 6.363 | 22 |
| 13 | 2.05 | 7.0746e-03 | 3.548e+02 | 6.023 | 13 |
| 14 | 2.01 | 1.7874e-03 | 3.511e+02 | 5.897 | 9 |
| 15 | 2.43 | 1.2725e-03 | 3.485e+02 | 5.775 | 9 |
| 16 | 1.89 | 1.2613e-03 | 3.460e+02 | 5.625 | 10 |
| 17 | 1.88 | 1.1882e-03 | 3.436e+02 | 5.512 | 9 |
| 18 | 1.90 | 1.2557e-03 | 3.411e+02 | 5.387 | 9 |
| 19 | 1.89 | 9.4163e-04 | 3.392e+02 | 5.307 | 7 |
| 20 | 1.94 | 8.2492e-04 | 3.376e+02 | 5.217 | 8 |
=====================================================================================

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Modeling and Prediction finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by