Fron Python to Matlab
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Pouyan Msgn
am 14 Nov. 2018
Kommentiert: Nour Sd
am 8 Dez. 2018
I got a code in Python that I will write it again in Matlab and get the same plot:
The code is :
npts = 1000 # number of points in uncorrelated data set
Emax = 10. # energy goes from zero to Emax
Ec = 0.1 # correlation energy
kT = 0.25
# create discrete values of Energy
E = np.linspace(0, Emax, npts)
E_extra = np.linspace(0, Emax, 2*npts-1) #sometimes we need this size to convolve
#PLOT 1: Tbar correlated
Tbar = np.random.normal(loc=0., scale=1.0, size=2*npts-1 )
y = np.exp(- ((E-Emax/2.)/Ec)**2)
#convolution between Tbar and correlation energy
Tbar_c = np.convolve(y, Tbar, mode='valid') #valid = no edge effects
# normalize the data (maximum=1, minimum=0)
Tbar_c = Tbar_c - Tbar_c.min()
Tbar_c = Tbar_c/Tbar_c.max()
# plot the correlated data set
ax1.plot(E, Tbar_c)
The plot is (I need the first plot (the one at the top T(E)))
Here is what I have done yet:
clc
clear all
Emax=10;
Ec=0.01;
E=0:0.01:10;
g=exp(-0.5.*((E-Emax).^2)./Ec);
y=rand(1,length(E));
%y=rand(size(E))
T1=conv(y,g,'same');
T=T1./norm(T1);
subplot(3,1,1);
plot(E,T)
The problem is for me here:
Draw random samples from a normal (Gaussian) distribution. in Python we can do it by :
Tbar = np.random.normal(loc=0., scale=1.0, size=2*npts-1 )
4 Kommentare
Adam Danz
am 8 Dez. 2018
Bearbeitet: Adam Danz
am 8 Dez. 2018
Check out the convolution weight function convwf(). Carefully read the documentation to make sure this is doing what your python function does and that inputs are the same and in the same order (or not).
If this isn't want you're looking for, I suggest you open a new question. I'd rather not this thread turn into a Python --> Matlab conversion forum.
Akzeptierte Antwort
Adam Danz
am 14 Nov. 2018
Bearbeitet: Adam Danz
am 14 Nov. 2018
I can't run your code right now in python so I can't compare the results but most of these lines should be the correct conversion.
See help normrnd to pull numbers from a given gaussian distribution.
npts = 1000; % number of points in uncorrelated data set
Emax = 10; % energy goes from zero to Emax
Ec = 0.1; % correlation energy
kT = 0.25;
% create discrete values of Energy
E = linspace(0, Emax, npts);
E_extra = linspace(0, Emax, 2*npts-1); %sometimes we need this size to convolve
%PLOT 1: Tbar correlated
Tbar = normrnd(0, 1, 1, 2*npts-1)
y = exp(- ((E-Emax/2.)/Ec).*2);
%convolution between Tbar and correlation energy
Tbar_c = conv(y, Tbar, 'same'); %valid = no edge effects
% normalize the data (maximum=1, minimum=0)
Tbar_c = Tbar_c - min(Tbar_c);
Tbar_c = Tbar_c/max(Tbar_c);
% plot the correlated data set
plot(E, Tbar_c)
4 Kommentare
Weitere Antworten (1)
dpb
am 14 Nov. 2018
See
doc randn
When looking for something you don't know function name but have a clue about what is,
lookfor keyword
is useful; in this case either
lookfor random
lookfor normal
would lead you there...also just the venerable old
help
can show you what areas are in base Matlab plus the installed toolboxes available...
0 Kommentare
Siehe auch
Kategorien
Mehr zu Call Python from MATLAB finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!