fitting experimental data with the model + Monte-Carlo

4 Ansichten (letzte 30 Tage)
Farhan Ashraf
Farhan Ashraf am 5 Apr. 2018
Hello, I am trying to run this code and it's giving an error that matrix dimensions must not agree. I tried but did not resolve the issue. please suggest something
if
function [fitresult, gof] = createFit(t, y)
t=[24.88503903 78.50497273 139.9636403 194.6529783 297.4975938 397.283713];
y=[45.00727678 36.79417319 37.5451424 33.05702304 30.41701789 28.98254504];
nsample=1000;
for i=1:nsample
DD=1e12+2e12*randn(1);
self_coff=0.08+0.04*randn(1);
line_energy=0.5+0.5*randn(1);
%conversion_factor=0.32+0.06*randn(1);
threshold_stress=25.9e9*2.86e-10.*sqrt(DD).*((0.5.*line_energy)+sqrt(self_coff));
ave_strainrate=2.86e-10*1e12.*sqrt(DD);
[xData, yData] = prepareCurveData( t, y );
ft = fittype( strcat('(',num2str(threshold_stress)),'+((0.89.*s)*(1-((8.617e-5.*x)./F).*log(6.667e-4,'./strcat('(',num2str(ave_strainrate)),'))).^(1/q))^(1/p)))./(0.33))', 'independent', 'x', 'dependent', 'y');.
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.Lower = [1.1 0.667 1.5 3];
opts.StartPoint = [1.8 0.667 1.5 4];
opts.TolX = 1;
opts.Upper = [3.2 0.667 1.5 25];
end
% Fit model to data.
[fitresult, gof] = fit( xData, yData, ft, opts );
end

Antworten (0)

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by