How can i save a single .mat file of features for many images (loop for)?

1 Ansicht (letzte 30 Tage)
Braiki Marwa
Braiki Marwa am 9 Jan. 2018
Bearbeitet: Braiki Marwa am 9 Jan. 2018
i trained two-class-classification (svmtrain) with 15 features for 18 images and i have different number of objects in a single image. I want to save single .mat file of features of these images?my problem is when i run this code i have just the variables of last image!!This is my code :

Antworten (1)

KSSV
KSSV am 9 Jan. 2018
You can save all the data into a single .mat file.....with different variable names.
  4 Kommentare
Stephen23
Stephen23 am 9 Jan. 2018
"with different variable names."
Better would be to use one array, e.g. a cell array or an ND numeric array.
Braiki Marwa
Braiki Marwa am 9 Jan. 2018
This is my code :
NbIm = size(names1,1);
n1 = 1;
n2 = NbIm;
for n=n1:n2
%1- Read the original image
%2- Processing : Segmentation
%3- characterization :
[B3,L3,N3] = bwboundaries(ICellules); (see picture)
CC = bwconncomp(L3);
BW=bwlabel(L3); stats1=regionprops(CC,'Area','Centroid','Eccentricity','Perimeter','ConvexArea','ConvexHull','ConvexImage','MajorAxisLength','MinorAxisLength','Orientation','Solidity','BoundingBox');
for k=1:length(B3),
V=[];glcm=[];
V=Im_originale(BW==k);
glcm = graycomatrix(V,'Offset',[2 0],'Symmetric', true);
stats= graycoprops(glcm);
Contrast_Cellule =stats.Contrast;
Correlation_Cellule =stats.Correlation;
Energy_Cellule =stats.Energy;
Homogeneity_Cellule =stats.Homogeneity;
Area_cellule = stats1(k).Area;
Perimeter_cellule = stats1(k).Perimeter;
Circularity_cellule= (4*pi*Area_cellule)/Perimeter_cellule^2;
Centroid_cellule = stats1(k).Centroid;
Compactness_cellule=Perimeter_cellule^2/(4*pi*Area_cellule);
MajorAxis_cellule=stats1(k). MajorAxisLength;
MinorAxis_cellule=stats1(k). MinorAxisLength;
Orientation_cellule =stats1(k).Orientation;
Eccentricity_cellule=stats1(k).Eccentricity;
Solidity_cellule=stats1(k).Solidity;
boundary3 = B3{k};
[cc] = chaincode(boundary3);
ai=cc.code;
ai = ai.';
output = calc_harmonic_coefficients(ai,30);
Ampl=0.5*sqrt((output(1)^2)+(output(2)^2)+(output(3)^2)+(output(4)^2));
Feat(k,:)=[Area_cellule,Perimeter_cellule,Circularity_cellule,Compactness_cellule, Solidity_cellule,Eccentricity_cellule,MajorAxis_cellule,MinorAxis_cellule, Centroid_cellule,Ampl,Contrast_Cellule,Correlation_Cellule,Energy_Cellule,Homogeneity_Cellule];
end
end
save('FeatTrain.mat', 'Feat');

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu MATLAB finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by